|
|
Line 3: |
Line 3: |
| <StructureSection load='5c8b' size='340' side='right'caption='[[5c8b]], [[Resolution|resolution]] 2.70Å' scene=''> | | <StructureSection load='5c8b' size='340' side='right'caption='[[5c8b]], [[Resolution|resolution]] 2.70Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5c8b]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/As_1.2190 As 1.2190]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5C8B OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5C8B FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5c8b]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Bifidobacterium_adolescentis Bifidobacterium adolescentis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5C8B OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5C8B FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">sucP ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1680 AS 1.2190])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5c8b FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5c8b OCA], [https://pdbe.org/5c8b PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5c8b RCSB], [https://www.ebi.ac.uk/pdbsum/5c8b PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5c8b ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Transferase Transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.1.7 2.4.1.7] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5c8b FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5c8b OCA], [http://pdbe.org/5c8b PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5c8b RCSB], [http://www.ebi.ac.uk/pdbsum/5c8b PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5c8b ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/SUCP_BIFAA SUCP_BIFAA] Catalyzes the reversible phosphorolysis of sucrose into alpha-D-glucose 1-phosphate (Glc1P) and D-fructose (PubMed:14740189, PubMed:20691225). Is involved in sucrose degradation. Also displays transglucosylation activity in vitro, by transferring the glucosyl moiety of Glc1P to a broad range of monomeric sugars, such as D- and L-arabinose, D- and L-arabitol, and xylitol (PubMed:14740189).<ref>PMID:14740189</ref> <ref>PMID:20691225</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 22: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: As 1 2190]] | + | [[Category: Bifidobacterium adolescentis]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Transferase]]
| + | [[Category: Grimm C]] |
- | [[Category: Grimm, C]] | + | [[Category: Kraus M]] |
- | [[Category: Kraus, M]] | + | |
- | [[Category: Bifidobacterium]]
| + | |
- | [[Category: Bisp]]
| + | |
- | [[Category: Sucrose phosphorylase]]
| + | |
| Structural highlights
Function
SUCP_BIFAA Catalyzes the reversible phosphorolysis of sucrose into alpha-D-glucose 1-phosphate (Glc1P) and D-fructose (PubMed:14740189, PubMed:20691225). Is involved in sucrose degradation. Also displays transglucosylation activity in vitro, by transferring the glucosyl moiety of Glc1P to a broad range of monomeric sugars, such as D- and L-arabinose, D- and L-arabitol, and xylitol (PubMed:14740189).[1] [2]
Publication Abstract from PubMed
Sucrose phosphorylases have been applied in the enzymatic production of glycosylated compounds for decades. However, several desirable acceptors, such as flavonoids or stilbenoids, that exhibit diverse antimicrobial, anticarcinogenic or antioxidant properties, remain poor substrates. The Q345F exchange in sucrose phosphorylase from Bifidobacterium adolescentis allows efficient glucosylation of resveratrol, (+)-catechin and (-)-epicatechin in yields of up to 97 % whereas the wild-type enzyme favours sucrose hydrolysis. Three previously undescribed products are made available. The crystal structure of the variant reveals a widened access channel with a hydrophobic aromatic surface that is likely to contribute to the improved activity towards aromatic acceptors. The generation of this channel can be explained in terms of a cascade of structural changes arising from the Q345F exchange. The observed mechanisms are likely to be relevant for the design of other tailor-made enzymes.
Redesign of the Active Site of Sucrose Phosphorylase through a Clash-Induced Cascade of Loop Shifts.,Kraus M, Grimm C, Seibel J Chembiochem. 2016 Jan 1;17(1):33-6. doi: 10.1002/cbic.201500514. Epub 2015 Dec 2. PMID:26527586[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ van den Broek LA, van Boxtel EL, Kievit RP, Verhoef R, Beldman G, Voragen AG. Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083. Appl Microbiol Biotechnol. 2004 Aug;65(2):219-27. Epub 2004 Jan 22. PMID:14740189 doi:http://dx.doi.org/10.1007/s00253-003-1534-x
- ↑ Cerdobbel A, Desmet T, De Winter K, Maertens J, Soetaert W. Increasing the thermostability of sucrose phosphorylase by multipoint covalent immobilization. J Biotechnol. 2010 Oct 1;150(1):125-30. doi: 10.1016/j.jbiotec.2010.07.029. Epub , 2010 Aug 4. PMID:20691225 doi:http://dx.doi.org/10.1016/j.jbiotec.2010.07.029
- ↑ Kraus M, Grimm C, Seibel J. Redesign of the Active Site of Sucrose Phosphorylase through a Clash-Induced Cascade of Loop Shifts. Chembiochem. 2016 Jan 1;17(1):33-6. doi: 10.1002/cbic.201500514. Epub 2015 Dec 2. PMID:26527586 doi:http://dx.doi.org/10.1002/cbic.201500514
|