|
|
Line 1: |
Line 1: |
| | | |
| ==The 3.1 A resolution structure of a eukaryotic SWEET transporter== | | ==The 3.1 A resolution structure of a eukaryotic SWEET transporter== |
- | <StructureSection load='5ctg' size='340' side='right' caption='[[5ctg]], [[Resolution|resolution]] 3.10Å' scene=''> | + | <StructureSection load='5ctg' size='340' side='right'caption='[[5ctg]], [[Resolution|resolution]] 3.10Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5ctg]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Japanese_rice Japanese rice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5CTG OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5CTG FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5ctg]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Oryza_sativa_Japonica_Group Oryza sativa Japonica Group]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5CTG OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5CTG FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BNG:B-NONYLGLUCOSIDE'>BNG</scene>, <scene name='pdbligand=PE5:3,6,9,12,15,18,21,24-OCTAOXAHEXACOSAN-1-OL'>PE5</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BNG:B-NONYLGLUCOSIDE'>BNG</scene>, <scene name='pdbligand=PE5:3,6,9,12,15,18,21,24-OCTAOXAHEXACOSAN-1-OL'>PE5</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5cth|5cth]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ctg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ctg OCA], [https://pdbe.org/5ctg PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ctg RCSB], [https://www.ebi.ac.uk/pdbsum/5ctg PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ctg ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SWEET2B, Os01g0700100, LOC_Os01g50460, OsJ_03146, P0047E11.3, P0454A11.22 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=39947 Japanese rice])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ctg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ctg OCA], [http://pdbe.org/5ctg PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5ctg RCSB], [http://www.ebi.ac.uk/pdbsum/5ctg PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5ctg ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/SWT2B_ORYSJ SWT2B_ORYSJ]] Mediates both low-affinity uptake and efflux of sugar across the plasma membrane.[UniProtKB:Q8L9J7] | + | [https://www.uniprot.org/uniprot/SWT2B_ORYSJ SWT2B_ORYSJ] Mediates both low-affinity uptake and efflux of sugar across the plasma membrane.[UniProtKB:Q8L9J7] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 20: |
Line 18: |
| </div> | | </div> |
| <div class="pdbe-citations 5ctg" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 5ctg" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[ABC transporter 3D structures|ABC transporter 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Japanese rice]] | + | [[Category: Large Structures]] |
- | [[Category: Feng, L]] | + | [[Category: Oryza sativa Japonica Group]] |
- | [[Category: Perry, K]] | + | [[Category: Feng L]] |
- | [[Category: Tao, Y]] | + | [[Category: Perry K]] |
- | [[Category: Membrane]] | + | [[Category: Tao Y]] |
- | [[Category: Transport]]
| + | |
- | [[Category: Transport protein]]
| + | |
| Structural highlights
Function
SWT2B_ORYSJ Mediates both low-affinity uptake and efflux of sugar across the plasma membrane.[UniProtKB:Q8L9J7]
Publication Abstract from PubMed
Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loading for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. Here we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Insights into the structure-function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.
Structure of a eukaryotic SWEET transporter in a homotrimeric complex.,Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, Xu Y, Perry K, Frommer WB, Feng L Nature. 2015 Nov 12;527(7577):259-63. doi: 10.1038/nature15391. Epub 2015 Oct 19. PMID:26479032[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, Xu Y, Perry K, Frommer WB, Feng L. Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature. 2015 Nov 12;527(7577):259-63. doi: 10.1038/nature15391. Epub 2015 Oct 19. PMID:26479032 doi:http://dx.doi.org/10.1038/nature15391
|