5e6v

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (06:15, 5 July 2023) (edit) (undo)
 
Line 3: Line 3:
<StructureSection load='5e6v' size='340' side='right'caption='[[5e6v]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
<StructureSection load='5e6v' size='340' side='right'caption='[[5e6v]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[5e6v]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5E6V OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5E6V FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[5e6v]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5E6V OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5E6V FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FUL:BETA-L-FUCOSE'>FUL</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8&#8491;</td></tr>
-
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene></td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FUL:BETA-L-FUCOSE'>FUL</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene></td></tr>
-
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1yuk|1yuk]]</td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5e6v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5e6v OCA], [https://pdbe.org/5e6v PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5e6v RCSB], [https://www.ebi.ac.uk/pdbsum/5e6v PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5e6v ProSAT]</span></td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ITGB2, CD18, MFI7 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
+
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5e6v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5e6v OCA], [http://pdbe.org/5e6v PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5e6v RCSB], [http://www.ebi.ac.uk/pdbsum/5e6v PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5e6v ProSAT]</span></td></tr>
+
</table>
</table>
== Disease ==
== Disease ==
-
[[http://www.uniprot.org/uniprot/ITB2_HUMAN ITB2_HUMAN]] Defects in ITGB2 are the cause of leukocyte adhesion deficiency type 1 (LAD1) [MIM:[http://omim.org/entry/116920 116920]]. LAD1 patients have recurrent bacterial infections and their leukocytes are deficient in a wide range of adhesion-dependent functions.<ref>PMID:7509236</ref> <ref>PMID:1346613</ref> <ref>PMID:1968911</ref> <ref>PMID:1694220</ref> <ref>PMID:1590804</ref> <ref>PMID:1352501</ref> <ref>PMID:1347532</ref> <ref>PMID:7686755</ref> <ref>PMID:9884339</ref> <ref>PMID:20529581</ref> <ref>PMID:20549317</ref>
+
[https://www.uniprot.org/uniprot/ITB2_HUMAN ITB2_HUMAN] Defects in ITGB2 are the cause of leukocyte adhesion deficiency type 1 (LAD1) [MIM:[https://omim.org/entry/116920 116920]. LAD1 patients have recurrent bacterial infections and their leukocytes are deficient in a wide range of adhesion-dependent functions.<ref>PMID:7509236</ref> <ref>PMID:1346613</ref> <ref>PMID:1968911</ref> <ref>PMID:1694220</ref> <ref>PMID:1590804</ref> <ref>PMID:1352501</ref> <ref>PMID:1347532</ref> <ref>PMID:7686755</ref> <ref>PMID:9884339</ref> <ref>PMID:20529581</ref> <ref>PMID:20549317</ref>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/ITB2_HUMAN ITB2_HUMAN]] Integrin alpha-L/beta-2 is a receptor for ICAM1, ICAM2, ICAM3 and ICAM4. Integrins alpha-M/beta-2 and alpha-X/beta-2 are receptors for the iC3b fragment of the third complement component and for fibrinogen. Integrin alpha-X/beta-2 recognizes the sequence G-P-R in fibrinogen alpha-chain. Integrin alpha-M/beta-2 recognizes P1 and P2 peptides of fibrinogen gamma chain. Integrin alpha-M/beta-2 is also a receptor for factor X. Integrin alpha-D/beta-2 is a receptor for ICAM3 and VCAM1. Triggers neutrophil transmigration during lung injury through PTK2B/PYK2-mediated activation.<ref>PMID:18587400</ref>
+
[https://www.uniprot.org/uniprot/ITB2_HUMAN ITB2_HUMAN] Integrin alpha-L/beta-2 is a receptor for ICAM1, ICAM2, ICAM3 and ICAM4. Integrins alpha-M/beta-2 and alpha-X/beta-2 are receptors for the iC3b fragment of the third complement component and for fibrinogen. Integrin alpha-X/beta-2 recognizes the sequence G-P-R in fibrinogen alpha-chain. Integrin alpha-M/beta-2 recognizes P1 and P2 peptides of fibrinogen gamma chain. Integrin alpha-M/beta-2 is also a receptor for factor X. Integrin alpha-D/beta-2 is a receptor for ICAM3 and VCAM1. Triggers neutrophil transmigration during lung injury through PTK2B/PYK2-mediated activation.<ref>PMID:18587400</ref>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
-
Integrins are modular (alphabeta) heterodimeric proteins that mediate cell adhesion and convey signals across the plasma membrane. Interdomain motions play a key role in signal transduction by propagating structural changes through the molecule, thus controlling the activation state and adhesive properties of the integrin. We expressed a soluble fragment of the human integrin beta2 subunit comprising the plexin-semaphorin-integrin domain (PSI)/hybrid domain/I-EGF1 fragment and present its crystal structure at 1.8-A resolution. The structure reveals an elongated molecule with a rigid architecture stabilized by nine disulfide bridges. The PSI domain is located centrally and participates in the formation of extended interfaces with the hybrid domain and I-EGF1 domains, respectively. The hybrid domain/PSI interface involves the burial of an Arg residue, and contacts between PSI and I-EGF1 are mainly mediated by well conserved Arg and Trp residues. Conservation of key interacting residues across the various integrin beta subunits sequences suggests that our structure represents a good model for the entire integrin family. Superposition with the integrin beta3 receptor in its bent conformation suggests that an articulation point is present at the linkage between its I-EGF1 and I-EGF2 modules and underlines the importance of this region for the control of integrin-mediated cell adhesion.
+
High-resolution crystal structures of the headpiece of lymphocyte function-associated antigen-1 (integrin alphaLbeta2) reveal how the alphaI domain interacts with its platform formed by the alpha-subunit beta-propeller and beta-subunit betaI domains. The alphaLbeta2 structures compared with alphaXbeta2 structures show that the alphaI domain, tethered through its N-linker and a disulfide to a stable beta-ribbon pillar near the center of the platform, can undergo remarkable pivoting and tilting motions that appear buffered by N-glycan decorations that differ between alphaL and alphaX subunits. Rerefined beta2 integrin structures reveal details including pyroglutamic acid at the beta2 N terminus and bending within the EGF1 domain. Allostery is relayed to the alphaI domain by an internal ligand that binds to a pocket at the interface between the beta-propeller and betaI domains. Marked differences between the alphaL and alphaX subunit beta-propeller domains concentrate near the binding pocket and alphaI domain interfaces. Remarkably, movement in allostery in the betaI domain of specificity determining loop 1 (SDL1) causes concerted movement of SDL2 and thereby tightens the binding pocket for the internal ligand.
-
The crystal structure of the plexin-semaphorin-integrin domain/hybrid domain/I-EGF1 segment from the human integrin beta2 subunit at 1.8-A resolution.,Shi M, Sundramurthy K, Liu B, Tan SM, Law SK, Lescar J J Biol Chem. 2005 Aug 26;280(34):30586-93. Epub 2005 Jun 17. PMID:15965234<ref>PMID:15965234</ref>
+
Leukocyte integrin alphaLbeta2 headpiece structures: The alphaI domain, the pocket for the internal ligand, and concerted movements of its loops.,Sen M, Springer TA Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2940-5. doi:, 10.1073/pnas.1601379113. Epub 2016 Mar 2. PMID:26936951<ref>PMID:26936951</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Line 30: Line 28:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Human]]
+
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Sen, M]]
+
[[Category: Sen M]]
-
[[Category: Springer, T A]]
+
[[Category: Springer TA]]
-
[[Category: Cell adhesion]]
+
-
[[Category: Lfa-1]]
+
-
[[Category: Lymphocyte function-associated antigen-1]]
+

Current revision

Re-refinement of the Crystal Structure of the Plexin-Semaphorin-Integrin Domain/Hybrid Domain/I-EGF1 Segment from the Human Integrin b2 Subunit

PDB ID 5e6v

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools