|
|
| Line 3: |
Line 3: |
| | <StructureSection load='5eh9' size='340' side='right'caption='[[5eh9]], [[Resolution|resolution]] 1.29Å' scene=''> | | <StructureSection load='5eh9' size='340' side='right'caption='[[5eh9]], [[Resolution|resolution]] 1.29Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[5eh9]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Bactk Bactk]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5EH9 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5EH9 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5eh9]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_thuringiensis_serovar_kurstaki Bacillus thuringiensis serovar kurstaki]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5EH9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5EH9 FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HED:2-HYDROXYETHYL+DISULFIDE'>HED</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.29Å</td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3dhb|3dhb]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HED:2-HYDROXYETHYL+DISULFIDE'>HED</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">aiiA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=29339 BACTK])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5eh9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5eh9 OCA], [https://pdbe.org/5eh9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5eh9 RCSB], [https://www.ebi.ac.uk/pdbsum/5eh9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5eh9 ProSAT]</span></td></tr> |
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Quorum-quenching_N-acyl-homoserine_lactonase Quorum-quenching N-acyl-homoserine lactonase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.1.81 3.1.1.81] </span></td></tr> | + | |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5eh9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5eh9 OCA], [http://pdbe.org/5eh9 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5eh9 RCSB], [http://www.ebi.ac.uk/pdbsum/5eh9 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5eh9 ProSAT]</span></td></tr> | + | |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/AHLLA_BACTK AHLLA_BACTK]] Catalyzes hydrolysis of N-hexanoyl-(S)-homoserine lactone, but not the R-enantiomer. Hydrolyzes short- and long-chain N-acyl homoserine lactones with or without 3-oxo substitution at C3, has maximum activity on C10-AHL.<ref>PMID:16314577</ref> | + | [https://www.uniprot.org/uniprot/AHLLA_BACTK AHLLA_BACTK] Catalyzes hydrolysis of N-hexanoyl-(S)-homoserine lactone, but not the R-enantiomer. Hydrolyzes short- and long-chain N-acyl homoserine lactones with or without 3-oxo substitution at C3, has maximum activity on C10-AHL.<ref>PMID:16314577</ref> |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 25: |
Line 23: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Bactk]] | + | [[Category: Bacillus thuringiensis serovar kurstaki]] |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Quorum-quenching N-acyl-homoserine lactonase]]
| + | [[Category: Baier F]] |
| - | [[Category: Baier, F]] | + | [[Category: Hong N-S]] |
| - | [[Category: Hong, N S]] | + | [[Category: Jackson CJ]] |
| - | [[Category: Jackson, C J]] | + | [[Category: Tokuriki N]] |
| - | [[Category: Tokuriki, N]] | + | [[Category: Yang G]] |
| - | [[Category: Yang, G]] | + | |
| - | [[Category: Hydrolase]]
| + | |
| - | [[Category: N-acyl homoserine lactonase from bacillus thuringiensis]]
| + | |
| Structural highlights
Function
AHLLA_BACTK Catalyzes hydrolysis of N-hexanoyl-(S)-homoserine lactone, but not the R-enantiomer. Hydrolyzes short- and long-chain N-acyl homoserine lactones with or without 3-oxo substitution at C3, has maximum activity on C10-AHL.[1]
Publication Abstract from PubMed
How remote mutations can lead to changes in enzyme function at a molecular level is a central question in evolutionary biochemistry and biophysics. Here, we combine laboratory evolution with biochemical, structural, genetic, and computational analysis to dissect the molecular basis for the functional optimization of phosphotriesterase activity in a bacterial lactonase (AiiA) from the metallo-beta-lactamase (MBL) superfamily. We show that a 1000-fold increase in phosphotriesterase activity is caused by a more favorable catalytic binding position of the paraoxon substrate in the evolved enzyme that resulted from conformational tinkering of the active site through peripheral mutations. A nonmutated active site residue, Phe68, was displaced by approximately 3 A through the indirect effects of two second-shell trajectory mutations, allowing molecular interactions between the residue and paraoxon. Comparative mutational scanning, i.e., examining the effects of alanine mutagenesis on different genetic backgrounds, revealed significant changes in the functional roles of Phe68 and other nonmutated active site residues caused by the indirect effects of trajectory mutations. Our work provides a quantitative measurement of the impact of second-shell mutations on the catalytic contributions of nonmutated residues and unveils the underlying intramolecular network of strong epistatic mutational relationships between active site residues and more remote residues. Defining these long-range conformational and functional epistatic relationships has allowed us to better understand the subtle, but cumulatively significant, role of second- and third-shell mutations in evolution.
Conformational Tinkering Drives Evolution of a Promiscuous Activity through Indirect Mutational Effects.,Yang G, Hong N, Baier F, Jackson CJ, Tokuriki N Biochemistry. 2016 Aug 16;55(32):4583-93. doi: 10.1021/acs.biochem.6b00561. Epub , 2016 Aug 2. PMID:27444875[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Kim MH, Choi WC, Kang HO, Lee JS, Kang BS, Kim KJ, Derewenda ZS, Oh TK, Lee CH, Lee JK. The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase. Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17606-11. Epub 2005 Nov 28. PMID:16314577
- ↑ Yang G, Hong N, Baier F, Jackson CJ, Tokuriki N. Conformational Tinkering Drives Evolution of a Promiscuous Activity through Indirect Mutational Effects. Biochemistry. 2016 Aug 16;55(32):4583-93. doi: 10.1021/acs.biochem.6b00561. Epub , 2016 Aug 2. PMID:27444875 doi:http://dx.doi.org/10.1021/acs.biochem.6b00561
|