|
|
| Line 1: |
Line 1: |
| | | | |
| | ==Nematocyst outer wall antigen, NW1 G11V K21P== | | ==Nematocyst outer wall antigen, NW1 G11V K21P== |
| - | <StructureSection load='2hm6' size='340' side='right'caption='[[2hm6]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''> | + | <StructureSection load='2hm6' size='340' side='right'caption='[[2hm6]]' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[2hm6]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Hydvu Hydvu]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HM6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2HM6 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2hm6]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Hydra_vulgaris Hydra vulgaris]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HM6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2HM6 FirstGlance]. <br> |
| - | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2hm3|2hm3]], [[2hm4|2hm4]], [[2hm5|2hm5]]</div></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">NOWA ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=6087 HYDVU])</td></tr>
| + | |
| | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2hm6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hm6 OCA], [https://pdbe.org/2hm6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2hm6 RCSB], [https://www.ebi.ac.uk/pdbsum/2hm6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2hm6 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2hm6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hm6 OCA], [https://pdbe.org/2hm6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2hm6 RCSB], [https://www.ebi.ac.uk/pdbsum/2hm6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2hm6 ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/Q8IT70_HYDVU Q8IT70_HYDVU] |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 21: |
Line 22: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Hydvu]] | + | [[Category: Hydra vulgaris]] |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Grzesiek, S]] | + | [[Category: Grzesiek S]] |
| - | [[Category: Jensen, P R]] | + | [[Category: Jensen PR]] |
| - | [[Category: Meier, S]] | + | [[Category: Meier S]] |
| - | [[Category: Oezbek, S]] | + | [[Category: Oezbek S]] |
| - | [[Category: Cysteine rich]]
| + | |
| - | [[Category: Molecular evolution]]
| + | |
| - | [[Category: Nematocyst]]
| + | |
| - | [[Category: Structural protein]]
| + | |
| Structural highlights
Function
Q8IT70_HYDVU
Publication Abstract from PubMed
Protein structures cluster into families of folds that can result from extremely different amino acid sequences [1]. Because the enormous amount of genetic information generates a limited number of protein folds [2], a particular domain structure often assumes numerous functions. How new protein structures and new functions evolve under these limitations remains elusive. Molecular evolution may be driven by the ability of biomacromolecules to adopt multiple conformations as a bridge between different folds [3-6]. This could allow proteins to explore new structures and new tasks while part of the structural ensemble retains the initial conformation and function as a safeguard [7]. Here we show that a global structural switch can arise from single amino acid changes in cysteine-rich domains (CRD) of cnidarian nematocyst proteins. The ability of these CRDs to form two structures with different disulfide patterns from an identical cysteine pattern is distinctive [8]. By applying a structure-based mutagenesis approach, we demonstrate that a cysteine-rich domain can interconvert between two natively occurring domain structures via a bridge state containing both structures. Comparing cnidarian CRD sequences leads us to believe that the mutations we introduced to stabilize each structure reflect the birth of new protein folds in evolution.
Continuous molecular evolution of protein-domain structures by single amino acid changes.,Meier S, Jensen PR, David CN, Chapman J, Holstein TW, Grzesiek S, Ozbek S Curr Biol. 2007 Jan 23;17(2):173-8. PMID:17240343[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Meier S, Jensen PR, David CN, Chapman J, Holstein TW, Grzesiek S, Ozbek S. Continuous molecular evolution of protein-domain structures by single amino acid changes. Curr Biol. 2007 Jan 23;17(2):173-8. PMID:17240343 doi:S0960-9822(06)02444-4
|