|
|
Line 3: |
Line 3: |
| <StructureSection load='1fzd' size='340' side='right'caption='[[1fzd]], [[Resolution|resolution]] 2.10Å' scene=''> | | <StructureSection load='1fzd' size='340' side='right'caption='[[1fzd]], [[Resolution|resolution]] 2.10Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1fzd]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1FZD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1FZD FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1fzd]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1FZD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1FZD FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NDG:2-(ACETYLAMINO)-2-DEOXY-A-D-GLUCOPYRANOSE'>NDG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> |
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=NDG:2-(ACETYLAMINO)-2-DEOXY-A-D-GLUCOPYRANOSE'>NDG</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1fzd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1fzd OCA], [https://pdbe.org/1fzd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1fzd RCSB], [https://www.ebi.ac.uk/pdbsum/1fzd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1fzd ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1fzd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1fzd OCA], [https://pdbe.org/1fzd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1fzd RCSB], [https://www.ebi.ac.uk/pdbsum/1fzd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1fzd ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[https://www.uniprot.org/uniprot/FIBA_HUMAN FIBA_HUMAN]] Defects in FGA are a cause of congenital afibrinogenemia (CAFBN) [MIM:[https://omim.org/entry/202400 202400]]. This is a rare autosomal recessive disorder characterized by bleeding that varies from mild to severe and by complete absence or extremely low levels of plasma and platelet fibrinogen. Note=The majority of cases of afibrinogenemia are due to truncating mutations. Variations in position Arg-35 (the site of cleavage of fibrinopeptide a by thrombin) leads to alpha-dysfibrinogenemias. Defects in FGA are a cause of amyloidosis type 8 (AMYL8) [MIM:[https://omim.org/entry/105200 105200]]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.<ref>PMID:8097946</ref>
| + | [https://www.uniprot.org/uniprot/FIBA_HUMAN FIBA_HUMAN] Defects in FGA are a cause of congenital afibrinogenemia (CAFBN) [MIM:[https://omim.org/entry/202400 202400]. This is a rare autosomal recessive disorder characterized by bleeding that varies from mild to severe and by complete absence or extremely low levels of plasma and platelet fibrinogen. Note=The majority of cases of afibrinogenemia are due to truncating mutations. Variations in position Arg-35 (the site of cleavage of fibrinopeptide a by thrombin) leads to alpha-dysfibrinogenemias. Defects in FGA are a cause of amyloidosis type 8 (AMYL8) [MIM:[https://omim.org/entry/105200 105200]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.<ref>PMID:8097946</ref> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/FIBA_HUMAN FIBA_HUMAN]] Fibrinogen has a double function: yielding monomers that polymerize into fibrin and acting as a cofactor in platelet aggregation.
| + | [https://www.uniprot.org/uniprot/FIBA_HUMAN FIBA_HUMAN] Fibrinogen has a double function: yielding monomers that polymerize into fibrin and acting as a cofactor in platelet aggregation. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 37: |
Line 38: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Applegate, D]] | + | [[Category: Applegate D]] |
- | [[Category: Doolittle, R F]] | + | [[Category: Doolittle RF]] |
- | [[Category: Everse, S J]] | + | [[Category: Everse SJ]] |
- | [[Category: Grieninger, G]] | + | [[Category: Grieninger G]] |
- | [[Category: Redman, C]] | + | [[Category: Redman C]] |
- | [[Category: Spraggon, G]] | + | [[Category: Spraggon G]] |
- | [[Category: Veerapandian, L]] | + | [[Category: Veerapandian L]] |
- | [[Category: Zhang, J Z]] | + | [[Category: Zhang J-Z]] |
- | [[Category: Alphaec domain]]
| + | |
- | [[Category: Blood coagulation]]
| + | |
- | [[Category: Fibrinogen related domain]]
| + | |
- | [[Category: Fibrinogen-420]]
| + | |
- | [[Category: Glycosylated protein]]
| + | |
| Structural highlights
Disease
FIBA_HUMAN Defects in FGA are a cause of congenital afibrinogenemia (CAFBN) [MIM:202400. This is a rare autosomal recessive disorder characterized by bleeding that varies from mild to severe and by complete absence or extremely low levels of plasma and platelet fibrinogen. Note=The majority of cases of afibrinogenemia are due to truncating mutations. Variations in position Arg-35 (the site of cleavage of fibrinopeptide a by thrombin) leads to alpha-dysfibrinogenemias. Defects in FGA are a cause of amyloidosis type 8 (AMYL8) [MIM:105200; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.[1]
Function
FIBA_HUMAN Fibrinogen has a double function: yielding monomers that polymerize into fibrin and acting as a cofactor in platelet aggregation.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The crystal structure of a recombinant alphaEC domain from human fibrinogen-420 has been determined at a resolution of 2.1 A. The protein, which corresponds to the carboxyl domain of the alphaE chain, was expressed in and purified from Pichia pastoris cells. Felicitously, during crystallization an amino-terminal segment was removed, apparently by a contaminating protease, allowing the 201-residue remaining parent body to crystallize. An x-ray structure was determined by molecular replacement. The electron density was clearly defined, partly as a result of averaging made possible by there being eight molecules in the asymmetric unit related by noncrystallographic symmetry (P1 space group). Virtually all of an asparagine-linked sugar cluster is present. Comparison with structures of the beta- and gamma-chain carboxyl domains of human fibrinogen revealed that the binding cleft is essentially neutral and should not bind Gly-Pro-Arg or Gly-His-Arg peptides of the sort bound by those other domains. Nonetheless, the cleft is clearly evident, and the possibility of binding a carbohydrate ligand like sialic acid has been considered.
Crystal structure of a recombinant alphaEC domain from human fibrinogen-420.,Spraggon G, Applegate D, Everse SJ, Zhang JZ, Veerapandian L, Redman C, Doolittle RF, Grieninger G Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9099-104. PMID:9689040[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Benson MD, Liepnieks J, Uemichi T, Wheeler G, Correa R. Hereditary renal amyloidosis associated with a mutant fibrinogen alpha-chain. Nat Genet. 1993 Mar;3(3):252-5. PMID:8097946 doi:http://dx.doi.org/10.1038/ng0393-252
- ↑ Spraggon G, Applegate D, Everse SJ, Zhang JZ, Veerapandian L, Redman C, Doolittle RF, Grieninger G. Crystal structure of a recombinant alphaEC domain from human fibrinogen-420. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9099-104. PMID:9689040
|