|
|
Line 3: |
Line 3: |
| <StructureSection load='1huq' size='340' side='right'caption='[[1huq]], [[Resolution|resolution]] 1.80Å' scene=''> | | <StructureSection load='1huq' size='340' side='right'caption='[[1huq]], [[Resolution|resolution]] 1.80Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1huq]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HUQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1HUQ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1huq]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HUQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1HUQ FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3rab|3rab]], [[1ek0|1ek0]], [[1d5c|1d5c]], [[1g16|1g16]], [[1zbd|1zbd]], [[5p21|5p21]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1huq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1huq OCA], [https://pdbe.org/1huq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1huq RCSB], [https://www.ebi.ac.uk/pdbsum/1huq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1huq ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1huq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1huq OCA], [https://pdbe.org/1huq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1huq RCSB], [https://www.ebi.ac.uk/pdbsum/1huq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1huq ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/RAB5C_MOUSE RAB5C_MOUSE]] Protein transport. Probably involved in vesicular traffic (By similarity).
| + | [https://www.uniprot.org/uniprot/RAB5C_MOUSE RAB5C_MOUSE] Protein transport. Probably involved in vesicular traffic (By similarity). |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 37: |
Line 37: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Lk3 transgenic mice]] | + | [[Category: Mus musculus]] |
- | [[Category: Dumas, J J]] | + | [[Category: Dumas JJ]] |
- | [[Category: Hatherly, S]] | + | [[Category: Hatherly S]] |
- | [[Category: Heller-Harrison, R]] | + | [[Category: Heller-Harrison R]] |
- | [[Category: Lambright, D G]] | + | [[Category: Lambright DG]] |
- | [[Category: Lawe, D C]] | + | [[Category: Lawe DC]] |
- | [[Category: Merithew, E]] | + | [[Category: Merithew E]] |
- | [[Category: Endocytosis]]
| + | |
- | [[Category: G-protein]]
| + | |
- | [[Category: Gtp hydrolysis]]
| + | |
- | [[Category: Membrane trafficking]]
| + | |
- | [[Category: Protein transport]]
| + | |
- | [[Category: Rab protein]]
| + | |
| Structural highlights
Function
RAB5C_MOUSE Protein transport. Probably involved in vesicular traffic (By similarity).
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Rab GTPases function as regulatory components of an evolutionarily conserved machinery that mediates docking, priming, and fusion of vesicles with intracellular membranes. We have previously shown that the active conformation of Rab3A is stabilized by a substantial hydrophobic interface between the putative conformational switch regions (Dumas, J. J., Zhu, Z., Connolly, J. L., and Lambright, D. G. (1999) Structure 7, 413-423). A triad of invariant hydrophobic residues at this switch interface (Phe-59, Trp-76, and Tyr-91) represents a major interaction determinant between the switch regions of Rab3A and the Rab3A-specific effector Rabphilin3A (Ostermeier, C., and Brunger, A. T. (1999) Cell 96, 363-374). Here, we report the crystal structure of the active form of Rab5C, a prototypical endocytic Rab GTPase. As is true for Rab3A, the active conformation of Rab5C is stabilized by a hydrophobic interface between the switch regions. However, the conformation of the invariant hydrophobic triad (residues Phe-58, Trp-75, and Tyr-90 in Rab5C) is dramatically altered such that the resulting surface is noncomplementary to the switch interaction epitope of Rabphilin3A. This structural rearrangement reflects a set of nonconservative substitutions in the hydrophobic core between the central beta sheet and the alpha2 helix. These observations demonstrate that structural plasticity involving an invariant hydrophobic triad at the switch interface contributes to the mechanism by which effectors recognize distinct Rab subfamilies. Thus, the active conformation of the switch regions conveys information about the identity of a particular Rab GTPase as well as the state of the bound nucleotide.
Structural plasticity of an invariant hydrophobic triad in the switch regions of Rab GTPases is a determinant of effector recognition.,Merithew E, Hatherly S, Dumas JJ, Lawe DC, Heller-Harrison R, Lambright DG J Biol Chem. 2001 Apr 27;276(17):13982-8. Epub 2001 Jan 25. PMID:11278565[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Merithew E, Hatherly S, Dumas JJ, Lawe DC, Heller-Harrison R, Lambright DG. Structural plasticity of an invariant hydrophobic triad in the switch regions of Rab GTPases is a determinant of effector recognition. J Biol Chem. 2001 Apr 27;276(17):13982-8. Epub 2001 Jan 25. PMID:11278565 doi:10.1074/jbc.M009771200
|