|
|
Line 3: |
Line 3: |
| <StructureSection load='1i3o' size='340' side='right'caption='[[1i3o]], [[Resolution|resolution]] 2.70Å' scene=''> | | <StructureSection load='1i3o' size='340' side='right'caption='[[1i3o]], [[Resolution|resolution]] 2.70Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1i3o]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1I3O OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1I3O FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1i3o]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1I3O OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1I3O FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.7Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1c9q|1c9q]], [[1pau|1pau]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">I39005 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), U32974 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1i3o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1i3o OCA], [https://pdbe.org/1i3o PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1i3o RCSB], [https://www.ebi.ac.uk/pdbsum/1i3o PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1i3o ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1i3o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1i3o OCA], [https://pdbe.org/1i3o PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1i3o RCSB], [https://www.ebi.ac.uk/pdbsum/1i3o PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1i3o ProSAT]</span></td></tr> |
| </table> | | </table> |
- | == Disease == | |
- | [[https://www.uniprot.org/uniprot/XIAP_HUMAN XIAP_HUMAN]] Defects in XIAP are the cause of lymphoproliferative syndrome X-linked type 2 (XLP2) [MIM:[https://omim.org/entry/300635 300635]]. XLP is a rare immunodeficiency characterized by extreme susceptibility to infection with Epstein-Barr virus (EBV). Symptoms include severe or fatal mononucleosis, acquired hypogammaglobulinemia, pancytopenia and malignant lymphoma.<ref>PMID:17080092</ref> | |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/CASP3_HUMAN CASP3_HUMAN]] Involved in the activation cascade of caspases responsible for apoptosis execution. At the onset of apoptosis it proteolytically cleaves poly(ADP-ribose) polymerase (PARP) at a '216-Asp-|-Gly-217' bond. Cleaves and activates sterol regulatory element binding proteins (SREBPs) between the basic helix-loop-helix leucine zipper domain and the membrane attachment domain. Cleaves and activates caspase-6, -7 and -9. Involved in the cleavage of huntingtin. Triggers cell adhesion in sympathetic neurons through RET cleavage.<ref>PMID:7596430</ref> <ref>PMID:21357690</ref> [[https://www.uniprot.org/uniprot/XIAP_HUMAN XIAP_HUMAN]] Multi-functional protein which regulates not only caspases and apoptosis, but also modulates inflammatory signaling and immunity, copper homeostasis, mitogenic kinase signaling, cell proliferation, as well as cell invasion and metastasis. Acts as a direct caspase inhibitor. Directly bind to the active site pocket of CASP3 and CASP7 and obstructs substrate entry. Inactivates CASP9 by keeping it in a monomeric, inactive state. Acts as an E3 ubiquitin-protein ligase regulating NF-kappa-B signaling and the target proteins for its E3 ubiquitin-protein ligase activity include: RIPK1, CASP3, CASP7, CASP8, CASP9, MAP3K2/MEKK2, DIABLO/SMAC, AIFM1, CCS and BIRC5/survivin. Ubiquitinion of CCS leads to enhancement of its chaperone activity toward its physiologic target, SOD1, rather than proteasomal degradation. Ubiquitinion of MAP3K2/MEKK2 and AIFM1 does not lead to proteasomal degradation. Plays a role in copper homeostasis by ubiquitinationg COMMD1 and promoting its proteasomal degradation. Can also function as E3 ubiquitin-protein ligase of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation. Regulates the BMP signaling pathway and the SMAD and MAP3K7/TAK1 dependent pathways leading to NF-kappa-B and JNK activation. Acts as an important regulator of innate immune signaling via regulation of Nodlike receptors (NLRs). Protects cells from spontaneous formation of the ripoptosome, a large multi-protein complex that has the capability to kill cancer cells in a caspase-dependent and caspase-independent manner. Suppresses ripoptosome formation by ubiquitinating RIPK1 and CASP8. Acts as a positive regulator of Wnt signaling and ubiquitinates TLE1, TLE2, TLE3, TLE4 and AES. Ubiquitination of TLE3 results in inhibition of its interaction with TCF7L2/TCF4 thereby allowing efficient recruitment and binding of the transcriptional coactivator beta-catenin to TCF7L2/TCF4 that is required to initiate a Wnt-specific transcriptional program.<ref>PMID:9230442</ref> <ref>PMID:11447297</ref> <ref>PMID:12121969</ref> <ref>PMID:14685266</ref> <ref>PMID:14645242</ref> <ref>PMID:17967870</ref> <ref>PMID:19473982</ref> <ref>PMID:21145488</ref> <ref>PMID:20154138</ref> <ref>PMID:22103349</ref> <ref>PMID:22304967</ref> <ref>PMID:17560374</ref>
| + | [https://www.uniprot.org/uniprot/CASP3_HUMAN CASP3_HUMAN] Involved in the activation cascade of caspases responsible for apoptosis execution. At the onset of apoptosis it proteolytically cleaves poly(ADP-ribose) polymerase (PARP) at a '216-Asp-|-Gly-217' bond. Cleaves and activates sterol regulatory element binding proteins (SREBPs) between the basic helix-loop-helix leucine zipper domain and the membrane attachment domain. Cleaves and activates caspase-6, -7 and -9. Involved in the cleavage of huntingtin. Triggers cell adhesion in sympathetic neurons through RET cleavage.<ref>PMID:7596430</ref> <ref>PMID:21357690</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 39: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Fesik, S W]] | + | [[Category: Fesik SW]] |
- | [[Category: Liddington, R C]] | + | [[Category: Liddington RC]] |
- | [[Category: Renatus, M]] | + | [[Category: Renatus M]] |
- | [[Category: Riedl, S J]] | + | [[Category: Riedl SJ]] |
- | [[Category: Salvesen, G S]] | + | [[Category: Salvesen GS]] |
- | [[Category: Schwarzenbacher, R]] | + | [[Category: Schwarzenbacher R]] |
- | [[Category: Sun, C]] | + | [[Category: Sun C]] |
- | [[Category: Zhou, Q]] | + | [[Category: Zhou Q]] |
- | [[Category: Apoptosis]]
| + | |
- | [[Category: Caspase]]
| + | |
- | [[Category: Complex]]
| + | |
- | [[Category: Iap]]
| + | |
| Structural highlights
Function
CASP3_HUMAN Involved in the activation cascade of caspases responsible for apoptosis execution. At the onset of apoptosis it proteolytically cleaves poly(ADP-ribose) polymerase (PARP) at a '216-Asp-|-Gly-217' bond. Cleaves and activates sterol regulatory element binding proteins (SREBPs) between the basic helix-loop-helix leucine zipper domain and the membrane attachment domain. Cleaves and activates caspase-6, -7 and -9. Involved in the cleavage of huntingtin. Triggers cell adhesion in sympathetic neurons through RET cleavage.[1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The molecular mechanism(s) that regulate apoptosis by caspase inhibition remain poorly understood. The main endogenous inhibitors are members of the IAP family and are exemplified by XIAP, which regulates the initiator caspase-9, and the executioner caspases-3 and -7. We report the crystal structure of the second BIR domain of XIAP (BIR2) in complex with caspase-3, at a resolution of 2.7 A, revealing the structural basis for inhibition. The inhibitor makes limited contacts through its BIR domain to the surface of the enzyme, and most contacts to caspase-3 originate from the N-terminal extension. This lies across the substrate binding cleft, but in reverse orientation compared to substrate binding. The mechanism of inhibition is due to a steric blockade prohibitive of substrate binding, and is distinct from the mechanism utilized by synthetic substrate analog inhibitors.
Structural basis for the inhibition of caspase-3 by XIAP.,Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, Liddington RC, Salvesen GS Cell. 2001 Mar 9;104(5):791-800. PMID:11257232[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, et al.. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995 Jul 6;376(6535):37-43. PMID:7596430 doi:http://dx.doi.org/10.1038/376037a0
- ↑ Cabrera JR, Bouzas-Rodriguez J, Tauszig-Delamasure S, Mehlen P. RET modulates cell adhesion via its cleavage by caspase in sympathetic neurons. J Biol Chem. 2011 Apr 22;286(16):14628-38. doi: 10.1074/jbc.M110.195461. Epub, 2011 Feb 28. PMID:21357690 doi:10.1074/jbc.M110.195461
- ↑ Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, Liddington RC, Salvesen GS. Structural basis for the inhibition of caspase-3 by XIAP. Cell. 2001 Mar 9;104(5):791-800. PMID:11257232
|