|
|
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of the DARPin-Protein A fusion protein== | | ==Crystal structure of the DARPin-Protein A fusion protein== |
- | <StructureSection load='5h76' size='340' side='right' caption='[[5h76]], [[Resolution|resolution]] 2.60Å' scene=''> | + | <StructureSection load='5h76' size='340' side='right'caption='[[5h76]], [[Resolution|resolution]] 2.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5h76]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Synthetic_construct_sequences Synthetic construct sequences]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5H76 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5H76 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5h76]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5H76 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5H76 FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5h75|5h75]], [[5h77|5h77]], [[5h78|5h78]], [[5h79|5h79]], [[5h7a|5h7a]], [[5h7b|5h7b]], [[5h7c|5h7c]], [[5h7d|5h7d]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">spa ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=32630 SYNTHETIC CONSTRUCT sequences])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5h76 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5h76 OCA], [https://pdbe.org/5h76 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5h76 RCSB], [https://www.ebi.ac.uk/pdbsum/5h76 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5h76 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5h76 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5h76 OCA], [http://pdbe.org/5h76 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5h76 RCSB], [http://www.ebi.ac.uk/pdbsum/5h76 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5h76 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/SPA_STAAU SPA_STAAU] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 22: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Synthetic construct sequences]] | + | [[Category: Large Structures]] |
- | [[Category: Kim, J H]] | + | [[Category: Staphylococcus aureus]] |
- | [[Category: Kwon, N Y]] | + | [[Category: Synthetic construct]] |
- | [[Category: Lee, H]] | + | [[Category: Kim JH]] |
- | [[Category: Lee, J H]] | + | [[Category: Kwon NY]] |
- | [[Category: Lee, J O]] | + | [[Category: Lee H]] |
- | [[Category: Youn, S J]] | + | [[Category: Lee JH]] |
- | [[Category: Immune system]] | + | [[Category: Lee JO]] |
- | [[Category: Synthetic protein]] | + | [[Category: Youn SJ]] |
| Structural highlights
Function
SPA_STAAU
Publication Abstract from PubMed
Generating artificial protein assemblies with complex shapes requires a method for connecting protein components with stable and predictable structures. Currently available methods for creating rigid protein assemblies rely on either complicated calculations or extensive trial and error. We describe a simple and efficient method for connecting two proteins via a fused alpha helix that is formed by joining two preexisting helices into a single extended helix. Because the end-to-end ligation of helices does not guarantee the formation of a continuous helix, we superimposed 1-2 turns of pairs of connecting helices by using a molecular graphics program. Then, we chose amino acids from the two natural sequences that would stabilize the connecting helix. This "shared helix method" is highly efficient. All the designed proteins that could be produced in Escherichia coli were readily crystallized and had the expected fusion structures. To prove the usefulness of this method, we produced two novel repeat proteins by assembling several copies of natural or artificial proteins with alpha helices at both termini. Their crystal structures demonstrated the successful assembly of the repeating units with the intended curved shapes. We propose that this method could dramatically expand the available repertoire of natural repeat proteins.
Construction of novel repeat proteins with rigid and predictable structures using a shared helix method.,Youn SJ, Kwon NY, Lee JH, Kim JH, Choi J, Lee H, Lee JO Sci Rep. 2017 Jun 1;7(1):2595. doi: 10.1038/s41598-017-02803-z. PMID:28572639[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Youn SJ, Kwon NY, Lee JH, Kim JH, Choi J, Lee H, Lee JO. Construction of novel repeat proteins with rigid and predictable structures using a shared helix method. Sci Rep. 2017 Jun 1;7(1):2595. doi: 10.1038/s41598-017-02803-z. PMID:28572639 doi:http://dx.doi.org/10.1038/s41598-017-02803-z
|