|
|
Line 3: |
Line 3: |
| <StructureSection load='1lf8' size='340' side='right'caption='[[1lf8]], [[Resolution|resolution]] 2.30Å' scene=''> | | <StructureSection load='1lf8' size='340' side='right'caption='[[1lf8]], [[Resolution|resolution]] 2.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1lf8]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1LF8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1LF8 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1lf8]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1LF8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1LF8 FirstGlance]. <br> |
- | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1jpl|1jpl]], [[1juq|1juq]], [[1jwg|1jwg]], [[1jwf|1jwf]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1lf8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1lf8 OCA], [https://pdbe.org/1lf8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1lf8 RCSB], [https://www.ebi.ac.uk/pdbsum/1lf8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1lf8 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1lf8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1lf8 OCA], [https://pdbe.org/1lf8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1lf8 RCSB], [https://www.ebi.ac.uk/pdbsum/1lf8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1lf8 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/GGA3_HUMAN GGA3_HUMAN]] Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (AC-LL) motif.<ref>PMID:11301005</ref> [[https://www.uniprot.org/uniprot/MPRI_HUMAN MPRI_HUMAN]] Transport of phosphorylated lysosomal enzymes from the Golgi complex and the cell surface to lysosomes. Lysosomal enzymes bearing phosphomannosyl residues bind specifically to mannose-6-phosphate receptors in the Golgi apparatus and the resulting receptor-ligand complex is transported to an acidic prelyosomal compartment where the low pH mediates the dissociation of the complex. This receptor also binds IGF2. Acts as a positive regulator of T-cell coactivation, by binding DPP4.<ref>PMID:10900005</ref>
| + | [https://www.uniprot.org/uniprot/GGA3_HUMAN GGA3_HUMAN] Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (AC-LL) motif.<ref>PMID:11301005</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 33: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Bonifacino, J S]] | + | [[Category: Bonifacino JS]] |
- | [[Category: Hurley, J H]] | + | [[Category: Hurley JH]] |
- | [[Category: Kato, Y]] | + | [[Category: Kato Y]] |
- | [[Category: Misra, S]] | + | [[Category: Misra S]] |
- | [[Category: Puertollano, R]] | + | [[Category: Puertollano R]] |
- | [[Category: Protein-phosphopeptide complex]]
| + | |
- | [[Category: Signaling protein]]
| + | |
- | [[Category: Vhs domain]]
| + | |
| Structural highlights
Function
GGA3_HUMAN Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (AC-LL) motif.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Phosphorylation of the cytosolic tails of transmembrane receptors can regulate their intracellular trafficking. The structural basis for such regulation, however, has not been explained in most cases. The cytosolic tail of the cation-independent mannose 6-phosphate receptor contains a serine residue within an acidic-cluster dileucine signal that is important for the function of the receptor in the biosynthetic sorting of lysosomal hydrolases. We show here that phosphorylation of this Ser enhances interactions of the signal with its recognition module, the VHS domain of the GGA proteins. Crystallographic analyses demonstrate that the phosphoserine residue interacts electrostatically with two basic residues on the VHS domain of GGA3, thus providing an additional point of attachment of the acidic-cluster dileucine signal to its recognition module.
Phosphoregulation of sorting signal-VHS domain interactions by a direct electrostatic mechanism.,Kato Y, Misra S, Puertollano R, Hurley JH, Bonifacino JS Nat Struct Biol. 2002 Jul;9(7):532-6. PMID:12032548[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Puertollano R, Randazzo PA, Presley JF, Hartnell LM, Bonifacino JS. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell. 2001 Apr 6;105(1):93-102. PMID:11301005
- ↑ Kato Y, Misra S, Puertollano R, Hurley JH, Bonifacino JS. Phosphoregulation of sorting signal-VHS domain interactions by a direct electrostatic mechanism. Nat Struct Biol. 2002 Jul;9(7):532-6. PMID:12032548 doi:10.1038/nsb807
|