|
|
Line 3: |
Line 3: |
| <StructureSection load='1sxi' size='340' side='right'caption='[[1sxi]], [[Resolution|resolution]] 3.00Å' scene=''> | | <StructureSection load='1sxi' size='340' side='right'caption='[[1sxi]], [[Resolution|resolution]] 3.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1sxi]] is a 12 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_14581 Atcc 14581]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SXI OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1SXI FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1sxi]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Priestia_megaterium Priestia megaterium]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SXI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1SXI FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1sxg|1sxg]], [[1sxh|1sxh]]</div></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1sxi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1sxi OCA], [https://pdbe.org/1sxi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1sxi RCSB], [https://www.ebi.ac.uk/pdbsum/1sxi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1sxi ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CCpa ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1404 ATCC 14581])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1sxi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1sxi OCA], [http://pdbe.org/1sxi PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1sxi RCSB], [http://www.ebi.ac.uk/pdbsum/1sxi PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1sxi ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/CCPA_BACME CCPA_BACME]] Global transcriptional regulator of carbon catabolite repression (CCR) and carbon catabolite activation (CCA), which ensures optimal energy usage under diverse conditions (By similarity). | + | [https://www.uniprot.org/uniprot/CCPA_PRIMG CCPA_PRIMG] Global transcriptional regulator of carbon catabolite repression (CCR) and carbon catabolite activation (CCA), which ensures optimal energy usage under diverse conditions. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 31: |
Line 29: |
| </div> | | </div> |
| <div class="pdbe-citations 1sxi" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 1sxi" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Catabolite control protein 3D structures|Catabolite control protein 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 14581]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Allen, G S]] | + | [[Category: Priestia megaterium]] |
- | [[Category: Brennan, R G]] | + | [[Category: Allen GS]] |
- | [[Category: Diel, M]] | + | [[Category: Brennan RG]] |
- | [[Category: Hillen, W]] | + | [[Category: Diel M]] |
- | [[Category: Schumacher, M A]] | + | [[Category: Hillen W]] |
- | [[Category: Seidel, G]] | + | [[Category: Schumacher MA]] |
- | [[Category: Allosterism]]
| + | [[Category: Seidel G]] |
- | [[Category: Ccr]]
| + | |
- | [[Category: Gram positive bacteria]]
| + | |
- | [[Category: Phosphoprotein]]
| + | |
- | [[Category: Transcription]]
| + | |
- | [[Category: Transcription regulation]]
| + | |
| Structural highlights
Function
CCPA_PRIMG Global transcriptional regulator of carbon catabolite repression (CCR) and carbon catabolite activation (CCA), which ensures optimal energy usage under diverse conditions.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Carbon catabolite repression (CCR) is one of the most fundamental environmental-sensing mechanisms in bacteria and imparts competitive advantage by establishing priorities in carbon metabolism. In gram-positive bacteria, the master transcription regulator of CCR is CcpA. CcpA is a LacI-GalR family member that employs, as an allosteric corepressor, the phosphoprotein HPr-Ser46-P, which is formed in glucose-replete conditions. Here we report structures of the Bacillus megaterium apoCcpA and a CcpA-(HPr-Ser46-P)-DNA complex. These structures reveal that HPr-Ser46-P mediates a novel two-component allosteric DNA binding activation mechanism that involves both rotation of the CcpA subdomains and relocation of pivot-point residue Thr61, which leads to juxtaposition of the DNA binding regions permitting "hinge" helix formation in the presence of cognate DNA. The structure of the CcpA-(HPr-Ser46-P)-cre complex also reveals the elegant mechanism by which CcpA family-specific interactions with HPr-Ser46-P residues Ser46-P and His15 partition the high-energy CCR and low-energy PTS pathways, the latter requiring HPr-His15-P.
Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P.,Schumacher MA, Allen GS, Diel M, Seidel G, Hillen W, Brennan RG Cell. 2004 Sep 17;118(6):731-41. PMID:15369672[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Schumacher MA, Allen GS, Diel M, Seidel G, Hillen W, Brennan RG. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell. 2004 Sep 17;118(6):731-41. PMID:15369672 doi:10.1016/j.cell.2004.08.027
|