|
|
Line 3: |
Line 3: |
| <StructureSection load='1zk7' size='340' side='right'caption='[[1zk7]], [[Resolution|resolution]] 1.60Å' scene=''> | | <StructureSection load='1zk7' size='340' side='right'caption='[[1zk7]], [[Resolution|resolution]] 1.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1zk7]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_aeruginosus"_(schroeter_1872)_trevisan_1885 "bacillus aeruginosus" (schroeter 1872) trevisan 1885]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ZK7 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1ZK7 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1zk7]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Pseudomonas_aeruginosa Pseudomonas aeruginosa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ZK7 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1ZK7 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3grs|3grs]], [[1ger|1ger]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">merA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=287 "Bacillus aeruginosus" (Schroeter 1872) Trevisan 1885])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1zk7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1zk7 OCA], [https://pdbe.org/1zk7 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1zk7 RCSB], [https://www.ebi.ac.uk/pdbsum/1zk7 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1zk7 ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Mercury(II)_reductase Mercury(II) reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.16.1.1 1.16.1.1] </span></td></tr> | + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1zk7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1zk7 OCA], [http://pdbe.org/1zk7 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1zk7 RCSB], [http://www.ebi.ac.uk/pdbsum/1zk7 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1zk7 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/MERA_PSEAI MERA_PSEAI]] Resistance to Hg(2+) in bacteria appears to be governed by a specialized system which includes mercuric reductase. MerA protein is responsible for volatilizing mercury as Hg(0). | + | [https://www.uniprot.org/uniprot/MERA_PSEAI MERA_PSEAI] Resistance to Hg(2+) in bacteria appears to be governed by a specialized system which includes mercuric reductase. MerA protein is responsible for volatilizing mercury as Hg(0). |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 36: |
Line 34: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Dong, A]] | + | [[Category: Pseudomonas aeruginosa]] |
- | [[Category: Falkowski, M]] | + | [[Category: Dong A]] |
- | [[Category: Fiedler, D]] | + | [[Category: Falkowski M]] |
- | [[Category: Ledwidge, R]] | + | [[Category: Fiedler D]] |
- | [[Category: Miller, S M]] | + | [[Category: Ledwidge R]] |
- | [[Category: Pai, E F]] | + | [[Category: Miller SM]] |
- | [[Category: Patel, B]] | + | [[Category: Pai EF]] |
- | [[Category: Summers, A O]] | + | [[Category: Patel B]] |
- | [[Category: Zelikova, J]] | + | [[Category: Summers AO]] |
- | [[Category: Mercuric ion reductase]]
| + | [[Category: Zelikova J]] |
- | [[Category: Oxidoreductase]]
| + | |
| Structural highlights
Function
MERA_PSEAI Resistance to Hg(2+) in bacteria appears to be governed by a specialized system which includes mercuric reductase. MerA protein is responsible for volatilizing mercury as Hg(0).
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The ligand binding and catalytic properties of heavy metal ions have led to the evolution of metal ion-specific pathways for control of their intracellular trafficking and/or elimination. Small MW proteins/domains containing a GMTCXXC metal binding motif in a betaalphabetabetaalphabeta fold are common among proteins controlling the mobility of soft metal ions such as Cu(1+), Zn(2+), and Hg(2+), and the functions of several have been established. In bacterial mercuric ion reductases (MerA), which catalyze reduction of Hg(2+) to Hg(0) as a means of detoxification, one or two repeats of sequences with this fold are highly conserved as N-terminal domains (NmerA) of uncertain function. To simplify functional analysis of NmerA, we cloned and expressed the domain and catalytic core of Tn501 MerA as separate proteins. In this paper, we show Tn501 NmerA to be a stable, soluble protein that binds 1 Hg(2+)/domain and delivers it to the catalytic core at kinetically competent rates. Comparison of steady-state data for full-length versus catalytic core MerA using Hg(glutathione)(2) or Hg(thioredoxin) as substrate demonstrates that the NmerA domain does participate in acquisition and delivery of Hg(2+) to the catalytic core during the reduction catalyzed by full-length MerA, particularly when Hg(2+) is bound to a protein. Finally, comparison of growth curves for glutathione-depleted Escherichia coli expressing either catalytic core, full-length, or a combination of core plus NmerA shows an increased protection of cells against Hg(2+) in the media when NmerA is present, providing the first evidence of a functional role for this highly conserved domain.
NmerA, the metal binding domain of mercuric ion reductase, removes Hg2+ from proteins, delivers it to the catalytic core, and protects cells under glutathione-depleted conditions.,Ledwidge R, Patel B, Dong A, Fiedler D, Falkowski M, Zelikova J, Summers AO, Pai EF, Miller SM Biochemistry. 2005 Aug 30;44(34):11402-16. PMID:16114877[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Ledwidge R, Patel B, Dong A, Fiedler D, Falkowski M, Zelikova J, Summers AO, Pai EF, Miller SM. NmerA, the metal binding domain of mercuric ion reductase, removes Hg2+ from proteins, delivers it to the catalytic core, and protects cells under glutathione-depleted conditions. Biochemistry. 2005 Aug 30;44(34):11402-16. PMID:16114877 doi:10.1021/bi050519d
|