|
|
Line 3: |
Line 3: |
| <StructureSection load='1zvu' size='340' side='right'caption='[[1zvu]], [[Resolution|resolution]] 3.00Å' scene=''> | | <StructureSection load='1zvu' size='340' side='right'caption='[[1zvu]], [[Resolution|resolution]] 3.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1zvu]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ZVU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1ZVU FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1zvu]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ZVU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1ZVU FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1zvt|1zvt]]</div></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">parC ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1zvu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1zvu OCA], [https://pdbe.org/1zvu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1zvu RCSB], [https://www.ebi.ac.uk/pdbsum/1zvu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1zvu ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1zvu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1zvu OCA], [https://pdbe.org/1zvu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1zvu RCSB], [https://www.ebi.ac.uk/pdbsum/1zvu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1zvu ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/PARC_ECOLI PARC_ECOLI]] Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule. MukB stimulates the relaxation activity of topoisomerase IV and also has a modest effect on decatenation.<ref>PMID:20921377</ref> <ref>PMID:12269820</ref> <ref>PMID:21300644</ref> <ref>PMID:16023670</ref>
| + | [https://www.uniprot.org/uniprot/PARC_ECOLI PARC_ECOLI] Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule. MukB stimulates the relaxation activity of topoisomerase IV and also has a modest effect on decatenation.<ref>PMID:20921377</ref> <ref>PMID:12269820</ref> <ref>PMID:21300644</ref> <ref>PMID:16023670</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 36: |
Line 35: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus coli migula 1895]] | + | [[Category: Escherichia coli]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Berger, J M]] | + | [[Category: Berger JM]] |
- | [[Category: Corbett, K D]] | + | [[Category: Corbett KD]] |
- | [[Category: Schoeffler, A J]] | + | [[Category: Schoeffler AJ]] |
- | [[Category: Thomsen, N D]] | + | [[Category: Thomsen ND]] |
- | [[Category: Atpase]]
| + | |
- | [[Category: Beta-pinwheel]]
| + | |
- | [[Category: Decatenation]]
| + | |
- | [[Category: Dna binding]]
| + | |
- | [[Category: Dna topology]]
| + | |
- | [[Category: Isomerase]]
| + | |
- | [[Category: Supercoiling]]
| + | |
| Structural highlights
Function
PARC_ECOLI Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule. MukB stimulates the relaxation activity of topoisomerase IV and also has a modest effect on decatenation.[1] [2] [3] [4]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Most bacteria possess two type IIA topoisomerases, DNA gyrase and topo IV, that together help manage chromosome integrity and topology. Gyrase primarily introduces negative supercoils into DNA, an activity mediated by the C-terminal domain of its DNA binding subunit (GyrA). Although closely related to gyrase, topo IV preferentially decatenates DNA and relaxes positive supercoils. Here we report the structure of the full-length Escherichia coli ParC dimer at 3.0 A resolution. The N-terminal DNA binding region of ParC is highly similar to that of GyrA, but the ParC dimer adopts a markedly different conformation. The C-terminal domain (CTD) of ParC is revealed to be a degenerate form of the homologous GyrA CTD, and is anchored to the top of the N-terminal domains in a configuration different from that thought to occur in gyrase. Biochemical assays show that the ParC CTD controls the substrate specificity of topo IV, likely by capturing DNA segments of certain crossover geometries. This work delineates strong mechanistic parallels between topo IV and gyrase, while explaining how structural differences between the two enzyme families have led to distinct activity profiles. These findings in turn explain how the structures and functions of bacterial type IIA topoisomerases have evolved to meet specific needs of different bacterial families for the control of chromosome superstructure.
The structural basis for substrate specificity in DNA topoisomerase IV.,Corbett KD, Schoeffler AJ, Thomsen ND, Berger JM J Mol Biol. 2005 Aug 19;351(3):545-61. PMID:16023670[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Li Y, Stewart NK, Berger AJ, Vos S, Schoeffler AJ, Berger JM, Chait BT, Oakley MG. Escherichia coli condensin MukB stimulates topoisomerase IV activity by a direct physical interaction. Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18832-7. doi:, 10.1073/pnas.1008678107. Epub 2010 Oct 4. PMID:20921377 doi:http://dx.doi.org/10.1073/pnas.1008678107
- ↑ Hiasa H. The Glu-84 of the ParC subunit plays critical roles in both topoisomerase IV-quinolone and topoisomerase IV-DNA interactions. Biochemistry. 2002 Oct 1;41(39):11779-85. PMID:12269820
- ↑ Pitts SL, Liou GF, Mitchenall LA, Burgin AB, Maxwell A, Neuman KC, Osheroff N. Use of divalent metal ions in the DNA cleavage reaction of topoisomerase IV. Nucleic Acids Res. 2011 Jun;39(11):4808-17. doi: 10.1093/nar/gkr018. Epub 2011, Feb 7. PMID:21300644 doi:http://dx.doi.org/10.1093/nar/gkr018
- ↑ Corbett KD, Schoeffler AJ, Thomsen ND, Berger JM. The structural basis for substrate specificity in DNA topoisomerase IV. J Mol Biol. 2005 Aug 19;351(3):545-61. PMID:16023670 doi:10.1016/j.jmb.2005.06.029
- ↑ Corbett KD, Schoeffler AJ, Thomsen ND, Berger JM. The structural basis for substrate specificity in DNA topoisomerase IV. J Mol Biol. 2005 Aug 19;351(3):545-61. PMID:16023670 doi:10.1016/j.jmb.2005.06.029
|