|
|
Line 3: |
Line 3: |
| <StructureSection load='2b6t' size='340' side='right'caption='[[2b6t]], [[Resolution|resolution]] 2.10Å' scene=''> | | <StructureSection load='2b6t' size='340' side='right'caption='[[2b6t]], [[Resolution|resolution]] 2.10Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2b6t]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Bpt4 Bpt4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2B6T OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2B6T FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2b6t]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T4 Escherichia virus T4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2B6T OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2B6T FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2b6w|2b6w]], [[2b6x|2b6x]], [[2b6y|2b6y]], [[2b6z|2b6z]], [[2b70|2b70]], [[2b72|2b72]], [[2b73|2b73]], [[2b74|2b74]], [[2b75|2b75]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GENE E ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10665 BPT4])</td></tr> | + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2b6t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2b6t OCA], [https://pdbe.org/2b6t PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2b6t RCSB], [https://www.ebi.ac.uk/pdbsum/2b6t PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2b6t ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2b6t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2b6t OCA], [https://pdbe.org/2b6t PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2b6t RCSB], [https://www.ebi.ac.uk/pdbsum/2b6t PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2b6t ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/LYS_BPT4 LYS_BPT4]] Helps to release the mature phage particles from the cell wall by breaking down the peptidoglycan.
| + | [https://www.uniprot.org/uniprot/ENLYS_BPT4 ENLYS_BPT4] Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.<ref>PMID:22389108</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 38: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bpt4]] | + | [[Category: Escherichia virus T4]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Lysozyme]]
| + | [[Category: Collins MD]] |
- | [[Category: Collins, M D]] | + | [[Category: Gruner SM]] |
- | [[Category: Gruner, S M]] | + | [[Category: Matthews BW]] |
- | [[Category: Matthews, B W]] | + | [[Category: Quillin ML]] |
- | [[Category: Quillin, M L]] | + | |
- | [[Category: Antimicrobial]]
| + | |
- | [[Category: Hydrolase]]
| + | |
| Structural highlights
Function
ENLYS_BPT4 Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Steric constraints, charged interactions and many other forces important to protein structure and function can be explored by mutagenic experiments. Research of this kind has led to a wealth of knowledge about what stabilizes proteins in their folded states. To gain a more complete picture requires that we perturb these structures in a continuous manner, something mutagenesis cannot achieve. With high pressure crystallographic methods it is now possible to explore the detailed properties of proteins while continuously varying thermodynamic parameters. Here, we detail the structural response of the cavity-containing mutant L99A of T4 lysozyme, as well as its pseudo wild-type (WT*) counterpart, to hydrostatic pressure. Surprisingly, the cavity has almost no effect on the pressure response: virtually the same changes are observed in WT* as in L99A under pressure. The cavity is most rigid, while other regions deform substantially. This implies that while some residues may increase the thermodynamic stability of a protein, they may also be structurally irrelevant. As recently shown, the cavity fills with water at pressures above 100 MPa while retaining its overall size. The resultant picture of the protein is one in which conformationally fluctuating side groups provide a liquid-like environment, but which also contribute to the rigidity of the peptide backbone.
Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography.,Collins MD, Quillin ML, Hummer G, Matthews BW, Gruner SM J Mol Biol. 2007 Mar 30;367(3):752-63. Epub 2006 Dec 15. PMID:17292912[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Moussa SH, Kuznetsov V, Tran TA, Sacchettini JC, Young R. Protein determinants of phage T4 lysis inhibition. Protein Sci. 2012 Apr;21(4):571-82. doi: 10.1002/pro.2042. Epub 2012 Mar 2. PMID:22389108 doi:http://dx.doi.org/10.1002/pro.2042
- ↑ Collins MD, Quillin ML, Hummer G, Matthews BW, Gruner SM. Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography. J Mol Biol. 2007 Mar 30;367(3):752-63. Epub 2006 Dec 15. PMID:17292912 doi:10.1016/j.jmb.2006.12.021
|