|
|
Line 3: |
Line 3: |
| <StructureSection load='2xpu' size='340' side='right'caption='[[2xpu]], [[Resolution|resolution]] 1.55Å' scene=''> | | <StructureSection load='2xpu' size='340' side='right'caption='[[2xpu]], [[Resolution|resolution]] 1.55Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2xpu]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2XPU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2XPU FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2xpu]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2XPU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2XPU FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=TDC:5A,6-ANHYDROTETRACYCLINE'>TDC</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.55Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2xgc|2xgc]], [[2xpw|2xpw]], [[3zqg|3zqg]], [[2x9d|2x9d]], [[1bjz|1bjz]], [[3zqh|3zqh]], [[2trt|2trt]], [[2xpv|2xpv]], [[2vkv|2vkv]], [[1ork|1ork]], [[2xge|2xge]], [[1a6i|1a6i]], [[2x6o|2x6o]], [[2vke|2vke]], [[1qpi|1qpi]], [[1du7|1du7]], [[2xgd|2xgd]], [[2xrl|2xrl]], [[2xpt|2xpt]], [[2xb5|2xb5]], [[2xps|2xps]], [[1bj0|1bj0]], [[3zqf|3zqf]], [[3zqi|3zqi]], [[2tct|2tct]], [[1bjy|1bjy]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=TDC:5A,6-ANHYDROTETRACYCLINE'>TDC</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2xpu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2xpu OCA], [https://pdbe.org/2xpu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2xpu RCSB], [https://www.ebi.ac.uk/pdbsum/2xpu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2xpu ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2xpu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2xpu OCA], [https://pdbe.org/2xpu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2xpu RCSB], [https://www.ebi.ac.uk/pdbsum/2xpu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2xpu ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/TETR4_ECOLX TETR4_ECOLX]] TetR is the repressor of the tetracycline resistance element; its N-terminal region forms a helix-turn-helix structure and binds DNA. Binding of tetracycline to TetR reduces the repressor affinity for the tetracycline resistance gene (tetA) promoter operator sites.
| + | [https://www.uniprot.org/uniprot/TETR4_ECOLX TETR4_ECOLX] TetR is the repressor of the tetracycline resistance element; its N-terminal region forms a helix-turn-helix structure and binds DNA. Binding of tetracycline to TetR reduces the repressor affinity for the tetracycline resistance gene (tetA) promoter operator sites. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 26: |
Line 26: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus coli migula 1895]] | + | [[Category: Escherichia coli]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Dalm, D]] | + | [[Category: Dalm D]] |
- | [[Category: Hinrichs, W]] | + | [[Category: Hinrichs W]] |
- | [[Category: Palm, G J]] | + | [[Category: Palm GJ]] |
- | [[Category: Helix-turn-helix]]
| + | |
- | [[Category: Metal coordination]]
| + | |
- | [[Category: Transcription]]
| + | |
- | [[Category: Transcription regulator]]
| + | |
| Structural highlights
Function
TETR4_ECOLX TetR is the repressor of the tetracycline resistance element; its N-terminal region forms a helix-turn-helix structure and binds DNA. Binding of tetracycline to TetR reduces the repressor affinity for the tetracycline resistance gene (tetA) promoter operator sites.
Publication Abstract from PubMed
Genes that render bacteria resistant to tetracycline-derived antibiotics are tightly regulated by repressors of the TetR family. In their physiologically relevant, magnesium-complexed form, tetracyclines induce allosteric rearrangements in the TetR homodimer, leading to its release from the promoter and derepression of transcription. According to earlier crystallographic work, recognition of the tetracycline-associated magnesium ion by TetR is crucial and triggers the allosteric cascade. Nevertheless, the derivative 5a,6-anhydrotetracycline, which shows an increased affinity for TetR, causes promoter release even in the absence of magnesium. To resolve this paradox, it has been proposed that metal-free 5a,6-anhydrotetracycline acts via an exceptional, conformationally different induction mode that circumvents the normal magnesium requirement. We have tested this hypothesis by determining crystal structures of TetR-5a,6-anhydrotetracycline complexes in the presence of magnesium, ethylenediaminetetraacetic acid, or high concentrations of potassium. Analysis of these three structures reveals that, irrespective of the metal, the effects of 5a,6-anhydrotetracycline binding are indistinguishable from those of canonical induction by other tetracyclines. Together with a close scrutiny of the earlier evidence of a metal-triggered mechanism, these results demonstrate that magnesium recognition per se is not a prerequisite for tetracycline repressor allostery.
Tetracycline Repressor Allostery Does Not Depend on Divalent Metal Recognition.,Werten S, Dalm D, Palm GJ, Grimm CC, Hinrichs W Biochemistry. 2014 Dec 9. PMID:25432019[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Werten S, Dalm D, Palm GJ, Grimm CC, Hinrichs W. Tetracycline Repressor Allostery Does Not Depend on Divalent Metal Recognition. Biochemistry. 2014 Dec 9. PMID:25432019 doi:http://dx.doi.org/10.1021/bi5012805
|