|
|
Line 3: |
Line 3: |
| <StructureSection load='5i0e' size='340' side='right'caption='[[5i0e]], [[Resolution|resolution]] 2.30Å' scene=''> | | <StructureSection load='5i0e' size='340' side='right'caption='[[5i0e]], [[Resolution|resolution]] 2.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5i0e]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_pyogenes"_glage_1903 "bacillus pyogenes" glage 1903]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5I0E OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5I0E FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5i0e]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Trueperella_pyogenes Trueperella pyogenes]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5I0E OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5I0E FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene>, <scene name='pdbligand=MES:2-(N-MORPHOLINO)-ETHANESULFONIC+ACID'>MES</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5i0f|5i0f]], [[5i0g|5i0g]], [[5i0d|5i0d]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene>, <scene name='pdbligand=MES:2-(N-MORPHOLINO)-ETHANESULFONIC+ACID'>MES</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CQ11_05330 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1661 "Bacillus pyogenes" Glage 1903])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5i0e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5i0e OCA], [https://pdbe.org/5i0e PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5i0e RCSB], [https://www.ebi.ac.uk/pdbsum/5i0e PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5i0e ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5i0e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5i0e OCA], [http://pdbe.org/5i0e PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5i0e RCSB], [http://www.ebi.ac.uk/pdbsum/5i0e PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5i0e ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
Line 22: |
Line 21: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus pyogenes glage 1903]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Anderson, W F]] | + | [[Category: Trueperella pyogenes]] |
- | [[Category: Structural genomic]] | + | [[Category: Anderson WF]] |
- | [[Category: Light, S H]] | + | [[Category: Light SH]] |
- | [[Category: Minasov, G]] | + | [[Category: Minasov G]] |
- | [[Category: Csgid]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Sugar binding protein]]
| + | |
| Structural highlights
Publication Abstract from PubMed
Active in the aqueous cellular environment where a massive excess of water is perpetually present, enzymes that catalyze the transfer of an electrophile to a non-water nucleophile (transferases) require specific strategies to inhibit mechanistically related hydrolysis reactions. To identify principles that confer transferase versus hydrolase reaction specificity, we exploited two enzymes that use highly similar catalytic apparatuses to catalyze the transglycosylation (a transferase reaction) or hydrolysis of alpha-1,3-glucan linkages in the cyclic tetrasaccharide cycloalternan (CA). We show that substrate binding to non-catalytic domains and a conformationally stable active site promote CA transglycosylation, whereas a distinct pattern of active site conformational change is associated with CA hydrolysis. These findings defy the classic view of induced-fit conformational change and illustrate a mechanism by which a stable hydrophobic binding site can favor transferase activity and disfavor hydrolysis. Application of these principles could facilitate the rational reengineering of transferases with desired catalytic properties.
Transferase Versus Hydrolase: The Role of Conformational Flexibility in Reaction Specificity.,Light SH, Cahoon LA, Mahasenan KV, Lee M, Boggess B, Halavaty AS, Mobashery S, Freitag NE, Anderson WF Structure. 2017 Jan 5. pii: S0969-2126(16)30397-5. doi:, 10.1016/j.str.2016.12.007. PMID:28089449[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Light SH, Cahoon LA, Mahasenan KV, Lee M, Boggess B, Halavaty AS, Mobashery S, Freitag NE, Anderson WF. Transferase Versus Hydrolase: The Role of Conformational Flexibility in Reaction Specificity. Structure. 2017 Jan 5. pii: S0969-2126(16)30397-5. doi:, 10.1016/j.str.2016.12.007. PMID:28089449 doi:http://dx.doi.org/10.1016/j.str.2016.12.007
|