|
|
Line 3: |
Line 3: |
| <StructureSection load='2h5c' size='340' side='right'caption='[[2h5c]], [[Resolution|resolution]] 0.82Å' scene=''> | | <StructureSection load='2h5c' size='340' side='right'caption='[[2h5c]], [[Resolution|resolution]] 0.82Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2h5c]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Atcc_29487 Atcc 29487]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2H5C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2H5C FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2h5c]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Lysobacter_enzymogenes Lysobacter enzymogenes]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2H5C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2H5C FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 0.82Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1ssx|1ssx]], [[1tal|1tal]], [[2ull|2ull]], [[1qrx|1qrx]], [[2h5d|2h5d]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Alpha-lytic_endopeptidase Alpha-lytic endopeptidase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.21.12 3.4.21.12] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2h5c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2h5c OCA], [https://pdbe.org/2h5c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2h5c RCSB], [https://www.ebi.ac.uk/pdbsum/2h5c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2h5c ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2h5c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2h5c OCA], [https://pdbe.org/2h5c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2h5c RCSB], [https://www.ebi.ac.uk/pdbsum/2h5c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2h5c ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/PRLA_LYSEN PRLA_LYSEN] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 35: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Alpha-lytic endopeptidase]] | |
- | [[Category: Atcc 29487]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Agard, D A]] | + | [[Category: Lysobacter enzymogenes]] |
- | [[Category: Daugherty, M D]] | + | [[Category: Agard DA]] |
- | [[Category: Fuhrmann, C N]] | + | [[Category: Daugherty MD]] |
- | [[Category: A-lytic protease]] | + | [[Category: Fuhrmann CN]] |
- | [[Category: Acylation transition state]]
| + | |
- | [[Category: Catalysis]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Packing distortion]]
| + | |
- | [[Category: Protein folding]]
| + | |
- | [[Category: Protein stability]]
| + | |
- | [[Category: Serine protease]]
| + | |
| Structural highlights
Function
PRLA_LYSEN
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
To address questions regarding the mechanism of serine protease catalysis, we have solved two X-ray crystal structures of alpha-lytic protease (alphaLP) that mimic aspects of the transition states: alphaLP at pH 5 (0.82 A resolution) and alphaLP bound to the peptidyl boronic acid inhibitor, MeOSuc-Ala-Ala-Pro-boroVal (0.90 A resolution). Based on these structures, there is no evidence of, or requirement for, histidine-flipping during the acylation step of the reaction. Rather, our data suggests that upon protonation of His57, Ser195 undergoes a conformational change that destabilizes the His57-Ser195 hydrogen bond, preventing the back-reaction. In both structures the His57-Asp102 hydrogen bond in the catalytic triad is a normal ionic hydrogen bond, and not a low-barrier hydrogen bond (LBHB) as previously hypothesized. We propose that the enzyme has evolved a network of relatively short hydrogen bonds that collectively stabilize the transition states. In particular, a short ionic hydrogen bond (SIHB) between His57 Nepsilon2 and the substrate's leaving group may promote forward progression of the TI1-to-acylenzyme reaction. We provide experimental evidence that refutes use of either a short donor-acceptor distance or a downfield 1H chemical shift as sole indicators of a LBHB.
Subangstrom crystallography reveals that short ionic hydrogen bonds, and not a His-Asp low-barrier hydrogen bond, stabilize the transition state in serine protease catalysis.,Fuhrmann CN, Daugherty MD, Agard DA J Am Chem Soc. 2006 Jul 19;128(28):9086-102. PMID:16834383[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Fuhrmann CN, Daugherty MD, Agard DA. Subangstrom crystallography reveals that short ionic hydrogen bonds, and not a His-Asp low-barrier hydrogen bond, stabilize the transition state in serine protease catalysis. J Am Chem Soc. 2006 Jul 19;128(28):9086-102. PMID:16834383 doi:http://dx.doi.org/10.1021/ja057721o
|