|
|
Line 3: |
Line 3: |
| <StructureSection load='2rc9' size='340' side='right'caption='[[2rc9]], [[Resolution|resolution]] 1.96Å' scene=''> | | <StructureSection load='2rc9' size='340' side='right'caption='[[2rc9]], [[Resolution|resolution]] 1.96Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2rc9]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2RC9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2RC9 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2rc9]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2RC9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2RC9 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1AC:1-AMINOCYCLOPROPANECARBOXYLIC+ACID'>1AC</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.96Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2rc7|2rc7]], [[2rc8|2rc8]], [[2rca|2rca]], [[2rcb|2rcb]], [[1y20|1y20]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1AC:1-AMINOCYCLOPROPANECARBOXYLIC+ACID'>1AC</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Grin3a ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Buffalo rat])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2rc9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2rc9 OCA], [https://pdbe.org/2rc9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2rc9 RCSB], [https://www.ebi.ac.uk/pdbsum/2rc9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2rc9 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2rc9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2rc9 OCA], [https://pdbe.org/2rc9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2rc9 RCSB], [https://www.ebi.ac.uk/pdbsum/2rc9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2rc9 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/NMD3A_RAT NMD3A_RAT]] NMDA receptor subtype of glutamate-gated ion channels with reduced single-channel conductance, low calcium permeability and low voltage-dependent sensitivity to magnesium. Mediated by glycine. May play a role in the development of dendritic spines. May also play a role in PPP2CB-NMDAR mediated signaling mechanism.
| + | [https://www.uniprot.org/uniprot/NMD3A_RAT NMD3A_RAT] NMDA receptor subtype of glutamate-gated ion channels with reduced single-channel conductance, low calcium permeability and low voltage-dependent sensitivity to magnesium. Mediated by glycine. May play a role in the development of dendritic spines. May also play a role in PPP2CB-NMDAR mediated signaling mechanism. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 37: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Buffalo rat]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Mayer, M L]] | + | [[Category: Rattus norvegicus]] |
- | [[Category: Yao, Y]] | + | [[Category: Mayer ML]] |
- | [[Category: Cell junction]] | + | [[Category: Yao Y]] |
- | [[Category: Glycoprotein]]
| + | |
- | [[Category: Ion transport]]
| + | |
- | [[Category: Ionic channel]]
| + | |
- | [[Category: Magnesium]]
| + | |
- | [[Category: Membrane protein]]
| + | |
- | [[Category: Postsynaptic cell membrane]]
| + | |
- | [[Category: Receptor]]
| + | |
- | [[Category: Synapse]]
| + | |
- | [[Category: Transmembrane]]
| + | |
- | [[Category: Transport]]
| + | |
| Structural highlights
Function
NMD3A_RAT NMDA receptor subtype of glutamate-gated ion channels with reduced single-channel conductance, low calcium permeability and low voltage-dependent sensitivity to magnesium. Mediated by glycine. May play a role in the development of dendritic spines. May also play a role in PPP2CB-NMDAR mediated signaling mechanism.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
NR3 subtype glutamate receptors have a unique developmental expression profile, but are the least well-characterized members of the NMDA receptor gene family, which have key roles in synaptic plasticity and brain development. Using ligand binding assays, crystallographic analysis, and all atom MD simulations, we investigate mechanisms underlying the binding by NR3A and NR3B of glycine and D-serine, which are candidate neurotransmitters for NMDA receptors containing NR3 subunits. The ligand binding domains of both NR3 subunits adopt a similar extent of domain closure as found in the corresponding NR1 complexes, but have a unique loop 1 structure distinct from that in all other glutamate receptor ion channels. Within their ligand binding pockets, NR3A and NR3B have strikingly different hydrogen bonding networks and solvent structures from those found in NR1, and fail to undergo a conformational rearrangement observed in NR1 upon binding the partial agonist ACPC. MD simulations revealed numerous interdomain contacts, which stabilize the agonist-bound closed-cleft conformation, and a novel twisting motion for the loop 1 helix that is unique in NR3 subunits.
Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors.,Yao Y, Harrison CB, Freddolino PL, Schulten K, Mayer ML EMBO J. 2008 Aug 6;27(15):2158-70. Epub 2008 Jul 17. PMID:18636091[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Yao Y, Harrison CB, Freddolino PL, Schulten K, Mayer ML. Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors. EMBO J. 2008 Aug 6;27(15):2158-70. Epub 2008 Jul 17. PMID:18636091 doi:http://dx.doi.org/10.1038/emboj.2008.140
|