|
|
Line 3: |
Line 3: |
| <StructureSection load='2rch' size='340' side='right'caption='[[2rch]], [[Resolution|resolution]] 1.85Å' scene=''> | | <StructureSection load='2rch' size='340' side='right'caption='[[2rch]], [[Resolution|resolution]] 1.85Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2rch]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Arath Arath]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2RCH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2RCH FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2rch]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Arabidopsis_thaliana Arabidopsis thaliana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2RCH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2RCH FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=243:(9Z,11E,13S)-13-HYDROXYOCTADECA-9,11-DIENOIC+ACID'>243</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.85Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2rcg|2rcg]], [[2rcl|2rcl]], [[2rcm|2rcm]], [[2rco|2rco]], [[2rcp|2rcp]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=243:(9Z,11E,13S)-13-HYDROXYOCTADECA-9,11-DIENOIC+ACID'>243</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CYP74A, AOS ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=3702 ARATH])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Hydroperoxide_dehydratase Hydroperoxide dehydratase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.92 4.2.1.92] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2rch FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2rch OCA], [https://pdbe.org/2rch PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2rch RCSB], [https://www.ebi.ac.uk/pdbsum/2rch PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2rch ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2rch FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2rch OCA], [https://pdbe.org/2rch PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2rch RCSB], [https://www.ebi.ac.uk/pdbsum/2rch PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2rch ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/CP74A_ARATH CP74A_ARATH] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 36: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Arath]] | + | [[Category: Arabidopsis thaliana]] |
- | [[Category: Hydroperoxide dehydratase]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Lee, D S]] | + | [[Category: Lee DS]] |
- | [[Category: Nioche, P]] | + | [[Category: Nioche P]] |
- | [[Category: Raman, C S]] | + | [[Category: Raman CS]] |
- | [[Category: Chloroplast]]
| + | |
- | [[Category: Fatty acid biosynthesis]]
| + | |
- | [[Category: Heme]]
| + | |
- | [[Category: Iron]]
| + | |
- | [[Category: Lipid synthesis]]
| + | |
- | [[Category: Lyase]]
| + | |
- | [[Category: Metal-binding]]
| + | |
- | [[Category: Oxylipin biosynthesis]]
| + | |
- | [[Category: P450 fold]]
| + | |
- | [[Category: Transit peptide]]
| + | |
| Structural highlights
Function
CP74A_ARATH
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The oxylipin pathway generates not only prostaglandin-like jasmonates but also green leaf volatiles (GLVs), which confer characteristic aromas to fruits and vegetables. Although allene oxide synthase (AOS) and hydroperoxide lyase are atypical cytochrome P450 family members involved in the synthesis of jasmonates and GLVs, respectively, it is unknown how these enzymes rearrange their hydroperoxide substrates into different products. Here we present the crystal structures of Arabidopsis thaliana AOS, free and in complex with substrate or intermediate analogues. The structures reveal an unusual active site poised to control the reactivity of an epoxyallylic radical and its cation by means of interactions with an aromatic pi-system. Replacing the amino acid involved in these steps by a non-polar residue markedly reduces AOS activity and, unexpectedly, is both necessary and sufficient for converting AOS into a GLV biosynthetic enzyme. Furthermore, by combining our structural data with bioinformatic and biochemical analyses, we have discovered previously unknown hydroperoxide lyase in plant growth-promoting rhizobacteria, AOS in coral, and epoxyalcohol synthase in amphioxus. These results indicate that oxylipin biosynthetic genes were present in the last common ancestor of plants and animals, but were subsequently lost in all metazoan lineages except Placozoa, Cnidaria and Cephalochordata.
Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes.,Lee DS, Nioche P, Hamberg M, Raman CS Nature. 2008 Sep 18;455(7211):363-8. Epub 2008 Aug 20. PMID:18716621[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Lee DS, Nioche P, Hamberg M, Raman CS. Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature. 2008 Sep 18;455(7211):363-8. Epub 2008 Aug 20. PMID:18716621 doi:10.1038/nature07307
|