|
|
Line 3: |
Line 3: |
| <StructureSection load='3bxf' size='340' side='right'caption='[[3bxf]], [[Resolution|resolution]] 1.70Å' scene=''> | | <StructureSection load='3bxf' size='340' side='right'caption='[[3bxf]], [[Resolution|resolution]] 1.70Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3bxf]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/"vibrio_subtilis"_ehrenberg_1835 "vibrio subtilis" ehrenberg 1835]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3BXF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3BXF FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3bxf]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3BXF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3BXF FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=13P:1,3-DIHYDROXYACETONEPHOSPHATE'>13P</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=FBP:BETA-FRUCTOSE-1,6-DIPHOSPHATE'>FBP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2okg|2okg]], [[3bxe|3bxe]], [[3bxg|3bxg]], [[3bxh|3bxh]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=13P:1,3-DIHYDROXYACETONEPHOSPHATE'>13P</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=FBP:BETA-FRUCTOSE-1,6-DIPHOSPHATE'>FBP</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">cggR, yvbQ, BSU33950 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 "Vibrio subtilis" Ehrenberg 1835])</td></tr> | + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3bxf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3bxf OCA], [https://pdbe.org/3bxf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3bxf RCSB], [https://www.ebi.ac.uk/pdbsum/3bxf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3bxf ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3bxf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3bxf OCA], [https://pdbe.org/3bxf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3bxf RCSB], [https://www.ebi.ac.uk/pdbsum/3bxf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3bxf ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/CGGR_BACSU CGGR_BACSU]] In the absence of glucose, represses the transcription of the gapA operon, which encodes five key glycolytic enzymes. Binds specifically to the cggR-gapA promoter region and blocks the progression of the RNA polymerase, leading to the arrest of the transcription.<ref>PMID:10799476</ref> <ref>PMID:12622823</ref> <ref>PMID:20462860</ref>
| + | [https://www.uniprot.org/uniprot/CGGR_BACSU CGGR_BACSU] In the absence of glucose, represses the transcription of the gapA operon, which encodes five key glycolytic enzymes. Binds specifically to the cggR-gapA promoter region and blocks the progression of the RNA polymerase, leading to the arrest of the transcription.<ref>PMID:10799476</ref> <ref>PMID:12622823</ref> <ref>PMID:20462860</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 37: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Vibrio subtilis ehrenberg 1835]] | + | [[Category: Bacillus subtilis]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Otwinowski, Z]] | + | [[Category: Otwinowski Z]] |
- | [[Category: Rezacova, P]] | + | [[Category: Rezacova P]] |
- | [[Category: Catabolic repressor]]
| + | |
- | [[Category: Deor family]]
| + | |
- | [[Category: Dna-binding]]
| + | |
- | [[Category: Effector binding domain]]
| + | |
- | [[Category: Gene regulation]]
| + | |
- | [[Category: Transcription regulation]]
| + | |
- | [[Category: Transcriptional regulator]]
| + | |
| Structural highlights
Function
CGGR_BACSU In the absence of glucose, represses the transcription of the gapA operon, which encodes five key glycolytic enzymes. Binds specifically to the cggR-gapA promoter region and blocks the progression of the RNA polymerase, leading to the arrest of the transcription.[1] [2] [3]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Expression of genes in the gapA operon encoding five enzymes for triose phosphate interconversion in Bacillus subtilis is negatively regulated by the Central glycolytic genes Regulator (CggR). CggR belongs to the large SorC/DeoR family of prokaryotic transcriptional regulators, characterized by an N-terminal DNA-binding domain and a large C-terminal effector-binding domain. When no glucose is present in growth media, CggR binds to its target DNA sequence and blocks the transcription of genes in the gapA operon. In the presence of glucose, binding of the known effector molecule fructose-1,6-bisphosphate abolishes this interaction. We have identified dihydroxyacetone phosphate, glucose-6-phosphate, and fructose-6-phosphate as additional CggR ligands that can bind to the effector-binding site. Crystal structures of C-CggR, the C-terminal effector-binding domain of CggR, both unliganded as well as in complex with the four ligands at resolutions between 1.65 and 1.80 A reveal unique ligand-specific structural changes in the binding site that affect the dimer interface. Binding affinities of these ligands were determined by isothermal titration calorimetry. Chemical cross-linking shows that CggR oligomerization is mediated through its effector-binding domain and that binding of the different ligands differentially affects the distribution of oligomers. Electrophoretic mobility shift assays (EMSAs) confirmed a destabilizing effect of FBP on the CggR/DNA complex and also showed similar effects for dihydroxyacetone phosphate. Our results suggest that CggR stability and function may be modulated by various effectors in a complex fashion.
Crystal structures of the effector-binding domain of repressor CggR from Bacillus subtilis reveal ligand-induced structural changes upon binding of several glycolytic intermediates.,Rezacova P, Kozisek M, Moy SF, Sieglova I, Joachimiak A, Machius M, Otwinowski Z Mol Microbiol. 2008 Jun 10;. PMID:18554327[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Fillinger S, Boschi-Muller S, Azza S, Dervyn E, Branlant G, Aymerich S. Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem. 2000 May 12;275(19):14031-7. PMID:10799476
- ↑ Doan T, Aymerich S. Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Mol Microbiol. 2003 Mar;47(6):1709-21. PMID:12622823
- ↑ Chaix D, Ferguson ML, Atmanene C, Van Dorsselaer A, Sanglier-Cianferani S, Royer CA, Declerck N. Physical basis of the inducer-dependent cooperativity of the Central glycolytic genes Repressor/DNA complex. Nucleic Acids Res. 2010 Sep;38(17):5944-57. doi: 10.1093/nar/gkq334. Epub 2010, May 12. PMID:20462860 doi:http://dx.doi.org/10.1093/nar/gkq334
- ↑ Rezacova P, Kozisek M, Moy SF, Sieglova I, Joachimiak A, Machius M, Otwinowski Z. Crystal structures of the effector-binding domain of repressor CggR from Bacillus subtilis reveal ligand-induced structural changes upon binding of several glycolytic intermediates. Mol Microbiol. 2008 Jun 10;. PMID:18554327 doi:MMI6318
|