|
|
Line 3: |
Line 3: |
| <StructureSection load='3c7v' size='340' side='right'caption='[[3c7v]], [[Resolution|resolution]] 2.07Å' scene=''> | | <StructureSection load='3c7v' size='340' side='right'caption='[[3c7v]], [[Resolution|resolution]] 2.07Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3c7v]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895] and [https://en.wikipedia.org/wiki/As_4.1611 As 4.1611]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3C7V OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3C7V FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3c7v]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli] and [https://en.wikipedia.org/wiki/Streptomyces_clavuligerus Streptomyces clavuligerus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3C7V OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3C7V FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1jtg|1jtg]], [[3c7u|3c7u]]</div></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.07Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">bla, blaTEM-116 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Beta-lactamase Beta-lactamase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.2.6 3.5.2.6] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3c7v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3c7v OCA], [https://pdbe.org/3c7v PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3c7v RCSB], [https://www.ebi.ac.uk/pdbsum/3c7v PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3c7v ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3c7v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3c7v OCA], [https://pdbe.org/3c7v PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3c7v RCSB], [https://www.ebi.ac.uk/pdbsum/3c7v PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3c7v ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/BLIP_STRCL BLIP_STRCL]] Inhibits a wide variety of beta lactamases.
| + | [https://www.uniprot.org/uniprot/BLAT_ECOLX BLAT_ECOLX] TEM-type are the most prevalent beta-lactamases in enterobacteria; they hydrolyze the beta-lactam bond in susceptible beta-lactam antibiotics, thus conferring resistance to penicillins and cephalosporins. TEM-3 and TEM-4 are capable of hydrolyzing cefotaxime and ceftazidime. TEM-5 is capable of hydrolyzing ceftazidime. TEM-6 is capable of hydrolyzing ceftazidime and aztreonam. TEM-8/CAZ-2, TEM-16/CAZ-7 and TEM-24/CAZ-6 are markedly active against ceftazidime. IRT-4 shows resistance to beta-lactamase inhibitors. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 38: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus coli migula 1895]] | + | [[Category: Escherichia coli]] |
- | [[Category: As 4 1611]]
| + | |
- | [[Category: Beta-lactamase]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Chow, D C]] | + | [[Category: Streptomyces clavuligerus]] |
- | [[Category: Wang, J]] | + | [[Category: Chow D-C]] |
- | [[Category: Antibiotic resistance]]
| + | [[Category: Wang J]] |
- | [[Category: Enzyme-inhibitor complex]]
| + | |
- | [[Category: Hydrolase]] | + | |
- | [[Category: Hydrolase-hydrolase inhibitor complex]]
| + | |
- | [[Category: Plasmid]]
| + | |
- | [[Category: Secreted]]
| + | |
| Structural highlights
Function
BLAT_ECOLX TEM-type are the most prevalent beta-lactamases in enterobacteria; they hydrolyze the beta-lactam bond in susceptible beta-lactam antibiotics, thus conferring resistance to penicillins and cephalosporins. TEM-3 and TEM-4 are capable of hydrolyzing cefotaxime and ceftazidime. TEM-5 is capable of hydrolyzing ceftazidime. TEM-6 is capable of hydrolyzing ceftazidime and aztreonam. TEM-8/CAZ-2, TEM-16/CAZ-7 and TEM-24/CAZ-6 are markedly active against ceftazidime. IRT-4 shows resistance to beta-lactamase inhibitors.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
In a previous study, we examined thermodynamic parameters for 20 alanine mutants in beta-lactamase inhibitory protein (BLIP) for binding to TEM-1 beta-lactamase. Here we have determined the structures of two thermodynamically distinctive complexes of BLIP mutants with TEM-1 beta-lactamase. The complex BLIP Y51A-TEM-1 is a tight binding complex with the most negative binding heat capacity change (DeltaG = approximately -13 kcal mol(-1) and DeltaCp = approximately -0.8 kcal mol(-1) K(-1)) among all of the mutants, whereas BLIP W150A-TEM-1 is a weak complex with one of the least negative binding heat capacity changes (DeltaG = approximately -8.5 kcal mol(-1) and DeltaCp = approximately -0.27 kcal mol(-1) K(-1)). We previously determined that BLIP Tyr51 is a canonical and Trp150 an anti-canonical TEM-1-contact residue, where canonical refers to the alanine substitution resulting in a matched change in the hydrophobicity of binding free energy. Structure determination indicates a rearrangement of the interactions between Asp49 of the W150A BLIP mutant and the catalytic pocket of TEM-1. The Asp49 of W150A moves more than 4 angstroms to form two new hydrogen bonds while losing four original hydrogen bonds. This explains the anti-canonical nature of the Trp150 to alanine substitution, and also reveals a strong long distance coupling between Trp150 and Asp49 of BLIP, because these two residues are more than 25 angstroms apart. Kinetic measurements indicate that the mutations influence the dissociation rate but not the association rate. Further analysis of the structures indicates that an increased number of interface-trapped water molecules correlate with poor interface packing in a mutant. It appears that the increase of interface-trapped water molecules is inversely correlated with negative binding heat capacity changes.
Structural insight into the kinetics and DeltaCp of interactions between TEM-1 beta-lactamase and beta-lactamase inhibitory protein (BLIP).,Wang J, Palzkill T, Chow DC J Biol Chem. 2009 Jan 2;284(1):595-609. Epub 2008 Oct 7. PMID:18840610[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Wang J, Palzkill T, Chow DC. Structural insight into the kinetics and DeltaCp of interactions between TEM-1 beta-lactamase and beta-lactamase inhibitory protein (BLIP). J Biol Chem. 2009 Jan 2;284(1):595-609. Epub 2008 Oct 7. PMID:18840610 doi:M804089200
|