|
|
Line 3: |
Line 3: |
| <StructureSection load='3ckb' size='340' side='right'caption='[[3ckb]], [[Resolution|resolution]] 2.30Å' scene=''> | | <StructureSection load='3ckb' size='340' side='right'caption='[[3ckb]], [[Resolution|resolution]] 2.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3ckb]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bactn Bactn]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CKB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3CKB FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3ckb]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacteroides_thetaiotaomicron_VPI-5482 Bacteroides thetaiotaomicron VPI-5482]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CKB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3CKB FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3ck7|3ck7]], [[3ck8|3ck8]], [[3ck9|3ck9]], [[3ckc|3ckc]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene>, <scene name='pdbligand=PRD_900009:alpha-maltotriose'>PRD_900009</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SusD ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=226186 BACTN])</td></tr> | + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ckb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ckb OCA], [https://pdbe.org/3ckb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ckb RCSB], [https://www.ebi.ac.uk/pdbsum/3ckb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ckb ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ckb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ckb OCA], [https://pdbe.org/3ckb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ckb RCSB], [https://www.ebi.ac.uk/pdbsum/3ckb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ckb ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/SUSD_BACTN SUSD_BACTN]] Major starch-binding protein present at the surface of the cell. Mediates starch-binding before starch transport in the periplasm for degradation.<ref>PMID:10986238</ref> <ref>PMID:11717282</ref> <ref>PMID:18611383</ref> <ref>PMID:9006015</ref>
| + | [https://www.uniprot.org/uniprot/SUSD_BACTN SUSD_BACTN] Major starch-binding protein present at the surface of the cell. Mediates starch-binding before starch transport in the periplasm for degradation.<ref>PMID:10986238</ref> <ref>PMID:11717282</ref> <ref>PMID:18611383</ref> <ref>PMID:9006015</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 34: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bactn]] | + | [[Category: Bacteroides thetaiotaomicron VPI-5482]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Gordon, J I]] | + | [[Category: Gordon JI]] |
- | [[Category: Koropatkin, N M]] | + | [[Category: Koropatkin NM]] |
- | [[Category: Martens, E C]] | + | [[Category: Martens EC]] |
- | [[Category: Smith, T J]] | + | [[Category: Smith TJ]] |
- | [[Category: Carbohydrate binding]]
| + | |
- | [[Category: Starch binding]]
| + | |
- | [[Category: Sugar binding protein]]
| + | |
- | [[Category: Tpr repeat]]
| + | |
| Structural highlights
Function
SUSD_BACTN Major starch-binding protein present at the surface of the cell. Mediates starch-binding before starch transport in the periplasm for degradation.[1] [2] [3] [4]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The human gut microbiota performs functions that are not encoded in our Homo sapiens genome, including the processing of otherwise undigestible dietary polysaccharides. Defining the structures of proteins involved in the import and degradation of specific glycans by saccharolytic bacteria complements genomic analysis of the nutrient-processing capabilities of gut communities. Here, we describe the atomic structure of one such protein, SusD, required for starch binding and utilization by Bacteroides thetaiotaomicron, a prominent adaptive forager of glycans in the distal human gut microbiota. The binding pocket of this unique alpha-helical protein contains an arc of aromatic residues that complements the natural helical structure of starch and imposes this conformation on bound maltoheptaose. Furthermore, SusD binds cyclic oligosaccharides with higher affinity than linear forms. The structures of several SusD/oligosaccharide complexes reveal an inherent ligand recognition plasticity dominated by the three-dimensional conformation of the oligosaccharides rather than specific interactions with the composite sugars.
Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices.,Koropatkin NM, Martens EC, Gordon JI, Smith TJ Structure. 2008 Jul;16(7):1105-15. PMID:18611383[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Shipman JA, Berleman JE, Salyers AA. Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron. J Bacteriol. 2000 Oct;182(19):5365-72. PMID:10986238
- ↑ Cho KH, Salyers AA. Biochemical analysis of interactions between outer membrane proteins that contribute to starch utilization by Bacteroides thetaiotaomicron. J Bacteriol. 2001 Dec;183(24):7224-30. PMID:11717282
- ↑ Koropatkin NM, Martens EC, Gordon JI, Smith TJ. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure. 2008 Jul;16(7):1105-15. PMID:18611383 doi:10.1016/j.str.2008.03.017
- ↑ Reeves AR, Wang GR, Salyers AA. Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J Bacteriol. 1997 Feb;179(3):643-9. PMID:9006015
- ↑ Koropatkin NM, Martens EC, Gordon JI, Smith TJ. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure. 2008 Jul;16(7):1105-15. PMID:18611383 doi:10.1016/j.str.2008.03.017
|