|
|
Line 3: |
Line 3: |
| <StructureSection load='3da8' size='340' side='right'caption='[[3da8]], [[Resolution|resolution]] 1.30Å' scene=''> | | <StructureSection load='3da8' size='340' side='right'caption='[[3da8]], [[Resolution|resolution]] 1.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3da8]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_tuberculosis"_(zopf_1883)_klein_1884 "bacillus tuberculosis" (zopf 1883) klein 1884]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DA8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3DA8 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3da8]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycobacterium_tuberculosis Mycobacterium tuberculosis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DA8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3DA8 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.3Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3dcj|3dcj]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">purN, MT0983, Rv0956 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1773 "Bacillus tuberculosis" (Zopf 1883) Klein 1884])</td></tr> | + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Phosphoribosylglycinamide_formyltransferase Phosphoribosylglycinamide formyltransferase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.1.2.2 2.1.2.2] </span></td></tr> | + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3da8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3da8 OCA], [https://pdbe.org/3da8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3da8 RCSB], [https://www.ebi.ac.uk/pdbsum/3da8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3da8 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3da8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3da8 OCA], [https://pdbe.org/3da8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3da8 RCSB], [https://www.ebi.ac.uk/pdbsum/3da8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3da8 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/PUR3_MYCTO PUR3_MYCTO]] Catalyzes the transfer of a formyl group from 10-formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate.
| + | [https://www.uniprot.org/uniprot/PUR3_MYCTU PUR3_MYCTU] Catalyzes the transfer of a formyl group from 10-formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate.[HAMAP-Rule:MF_01930] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 36: |
Line 34: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Phosphoribosylglycinamide formyltransferase]] | + | [[Category: Mycobacterium tuberculosis]] |
- | [[Category: Baker, E N]] | + | [[Category: Baker EN]] |
- | [[Category: Squire, C J]] | + | [[Category: Squire CJ]] |
- | [[Category: Zhang, Z]] | + | [[Category: Zhang Z]] |
- | [[Category: Glycinamide ribonucleotide transformylase]]
| + | |
- | [[Category: Purn]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
PUR3_MYCTU Catalyzes the transfer of a formyl group from 10-formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate.[HAMAP-Rule:MF_01930]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Enzymes from the de novo purine biosynthetic pathway have been exploited for the development of anti-cancer drugs, and represent novel targets for anti-bacterial drug development. In Mycobacterium tuberculosis, the cause of tuberculosis, this pathway has been identified as essential for growth and survival. The structure of M. tuberculosis PurN (MtPurN) has been determined in complex with magnesium and iodide at 1.30 A resolution, and with cofactor analogue, 5-methyltetrahydrofolate (5MTHF) at 2.2 A resolution. The structure shows a Rossmann-type fold that is very similar to the known structures of the human and E. coli PurN proteins. In contrast, MtPurN forms a dimer that is quite different from that formed by the Escherichia coli PurN, and which suggests a mechanism whereby communication could take place between the two active sites. Differences are seen in two active site loops and in the binding mode of the 5MTHF cofactor analogue between the two MtPurN molecules of the dimer. A binding site for halide ions is found in the dimer interface, and bound magnesium and iodide ions in the active site suggest sites that might be exploited in potential drug discovery strategies.
Structures of glycinamide ribonucleotide transformylase (PurN) from Mycobacterium tuberculosis reveal a novel dimer with relevance to drug discovery.,Zhang Z, Caradoc-Davies TT, Dickson JM, Baker EN, Squire CJ J Mol Biol. 2009 Jun 19;389(4):722-33. Epub 2009 Apr 24. PMID:19394344[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Zhang Z, Caradoc-Davies TT, Dickson JM, Baker EN, Squire CJ. Structures of glycinamide ribonucleotide transformylase (PurN) from Mycobacterium tuberculosis reveal a novel dimer with relevance to drug discovery. J Mol Biol. 2009 Jun 19;389(4):722-33. Epub 2009 Apr 24. PMID:19394344 doi:10.1016/j.jmb.2009.04.044
|