|
|
Line 3: |
Line 3: |
| <StructureSection load='5iqc' size='340' side='right'caption='[[5iqc]], [[Resolution|resolution]] 2.30Å' scene=''> | | <StructureSection load='5iqc' size='340' side='right'caption='[[5iqc]], [[Resolution|resolution]] 2.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5iqc]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/"micrococcus_aureus"_(rosenbach_1884)_zopf_1885 "micrococcus aureus" (rosenbach 1884) zopf 1885]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5IQC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5IQC FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5iqc]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5IQC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5IQC FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=51G:GENTAMICIN+C1'>51G</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5byl|5byl]], [[5iqa|5iqa]], [[5iqb|5iqb]], [[5iqd|5iqd]], [[5iqe|5iqe]], [[5iqf|5iqf]], [[5iqg|5iqg]], [[5iqh|5iqh]], [[5iqi|5iqi]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=51G:GENTAMICIN+C1'>51G</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">aacA-aphD, R015, VRA0030 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1280 "Micrococcus aureus" (Rosenbach 1884) Zopf 1885])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5iqc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5iqc OCA], [https://pdbe.org/5iqc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5iqc RCSB], [https://www.ebi.ac.uk/pdbsum/5iqc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5iqc ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5iqc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5iqc OCA], [http://pdbe.org/5iqc PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5iqc RCSB], [http://www.ebi.ac.uk/pdbsum/5iqc PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5iqc ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/AACA_STAAU AACA_STAAU]] Resistance to gentamicin, tobramycin, and kanamycin. Tobramycin and kanamycin resistance is due to the ACC activity, specified by N-terminal region, and the gentamicin resistance is due to the APH activity encoded by the C-terminal region of the protein. | + | [https://www.uniprot.org/uniprot/AACA_STAAU AACA_STAAU] Resistance to gentamicin, tobramycin, and kanamycin. Tobramycin and kanamycin resistance is due to the ACC activity, specified by N-terminal region, and the gentamicin resistance is due to the APH activity encoded by the C-terminal region of the protein. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 25: |
Line 24: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Berghuis, A M]] | + | [[Category: Staphylococcus aureus]] |
- | [[Category: Caldwell, S J]] | + | [[Category: Berghuis AM]] |
- | [[Category: Aminoglycoside]] | + | [[Category: Caldwell SJ]] |
- | [[Category: Antibiotic]]
| + | |
- | [[Category: Kinase]]
| + | |
- | [[Category: Resistance]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
5iqc is a 4 chain structure with sequence from Staphylococcus aureus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 2.3Å |
Ligands: | , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
AACA_STAAU Resistance to gentamicin, tobramycin, and kanamycin. Tobramycin and kanamycin resistance is due to the ACC activity, specified by N-terminal region, and the gentamicin resistance is due to the APH activity encoded by the C-terminal region of the protein.
Publication Abstract from PubMed
APH(2)-Ia is a widely disseminated resistance factor frequently found in clinical isolates of Staphylococcus aureus and pathogenic enterococci, where it is constitutively expressed. APH(2)-Ia confers high-level resistance to gentamicin and related aminoglycosides through phosphorylation of the antibiotic using guanosine triphosphate (GTP) as phosphate donor. We have determined crystal structures of the APH(2)-Ia in complex with GTP analogs, guanosine diphosphate, and aminoglycosides. These structures collectively demonstrate that aminoglycoside binding to the GTP-bound kinase drives conformational changes that bring distant regions of the protein into contact. These changes in turn drive a switch of the triphosphate cofactor from an inactive, stabilized conformation to a catalytically competent active conformation. This switch has not been previously reported for antibiotic kinases or for the structurally related eukaryotic protein kinases. This catalytic triphosphate switch presents a means by which the enzyme can curtail wasteful hydrolysis of GTP in the absence of aminoglycosides, providing an evolutionary advantage to this enzyme.
Antibiotic Binding Drives Catalytic Activation of Aminoglycoside Kinase APH(2)-Ia.,Caldwell SJ, Huang Y, Berghuis AM Structure. 2016 May 5. pii: S0969-2126(16)30038-7. doi:, 10.1016/j.str.2016.04.002. PMID:27161980[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Caldwell SJ, Huang Y, Berghuis AM. Antibiotic Binding Drives Catalytic Activation of Aminoglycoside Kinase APH(2)-Ia. Structure. 2016 May 5. pii: S0969-2126(16)30038-7. doi:, 10.1016/j.str.2016.04.002. PMID:27161980 doi:http://dx.doi.org/10.1016/j.str.2016.04.002
|