|
|
Line 3: |
Line 3: |
| <StructureSection load='3i3d' size='340' side='right'caption='[[3i3d]], [[Resolution|resolution]] 2.20Å' scene=''> | | <StructureSection load='3i3d' size='340' side='right'caption='[[3i3d]], [[Resolution|resolution]] 2.20Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3i3d]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Ecoli Ecoli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3I3D OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3I3D FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3i3d]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3I3D OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3I3D FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DMS:DIMETHYL+SULFOXIDE'>DMS</scene>, <scene name='pdbligand=IPT:ISOPROPYL-1-BETA-D-THIOGALACTOSIDE'>IPT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1jyx|1jyx]], [[1dp0|1dp0]], [[1jz5|1jz5]], [[3i3e|3i3e]], [[3i3b|3i3b]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DMS:DIMETHYL+SULFOXIDE'>DMS</scene>, <scene name='pdbligand=IPT:ISOPROPYL-1-BETA-D-THIOGALACTOSIDE'>IPT</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">lacz ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Beta-galactosidase Beta-galactosidase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.23 3.2.1.23] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3i3d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3i3d OCA], [https://pdbe.org/3i3d PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3i3d RCSB], [https://www.ebi.ac.uk/pdbsum/3i3d PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3i3d ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3i3d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3i3d OCA], [https://pdbe.org/3i3d PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3i3d RCSB], [https://www.ebi.ac.uk/pdbsum/3i3d PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3i3d ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/BGAL_ECOLI BGAL_ECOLI] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 36: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Beta-galactosidase]] | + | [[Category: Escherichia coli K-12]] |
- | [[Category: Ecoli]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Dugdale, M L]] | + | [[Category: Dugdale ML]] |
- | [[Category: Dymianiw, D]] | + | [[Category: Dymianiw D]] |
- | [[Category: Huber, R E]] | + | [[Category: Huber RE]] |
- | [[Category: Minhas, B]] | + | [[Category: Minhas B]] |
- | [[Category: Glycosidase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Immunoglobulin beta supersandwhich]]
| + | |
- | [[Category: Jelly-roll barrel]]
| + | |
| Structural highlights
Function
BGAL_ECOLI
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The Met-542 residue of beta-galactosidase is important for the enzyme's activity because it acts as a guide for the movement of the benzyl side chain of Phe-601 between two stable positions. This movement occurs in concert with an important conformational change (open vs. closed) of an active site loop (residues 794-803). Phe-601 and Arg-599, which interact with each other via the pi electrons of Phe-601 and the guanidium cation of Arg-599, move out of their normal positions and become disordered when Met-542 is replaced by an Ala residue because of the loss of the guide. Since the backbone carbonyl of Phe-601 is a ligand for Na(+), the Na(+) also moves out of its normal position and becomes disordered; the Na(+) binds about 120 times more poorly. In turn, two other Na(+) ligands, Asn-604 and Asp-201, become disordered. A substrate analog (IPTG) restored Arg-599, Phe-601, and Na(+) to their normal open-loop positions, whereas a transition state analog d-galactonolactone) restored them to their normal closed-loop positions. These compounds also restored order to Phe-601, Asn-604, Asp-201, and Na(+). Binding energy was, however, necessary to restore structure and order. The K(s) values of oNPG and pNPG and the competitive K(i) values of substrate analogs were 90-250 times higher than with native enzyme, whereas the competitive K(i) values of transition state analogs were ~3.5-10 times higher. Because of this, the E*S energy level is raised more than the E*transition state energy level and less activation energy is needed for galactosylation. The galactosylation rates (k) of M542A-beta-galactosidase therefore increase. However, the rate of degalactosylation (k) decreased because the E*transition state complex is less stable.
Role of Met-542 as a guide for the conformational changes of Phe-601 that occur during the reaction of β-galactosidase (Escherichia coli).,Dugdale ML, Dymianiw DL, Minhas BK, D'Angelo I, Huber RE Biochem Cell Biol. 2010 Oct;88(5):861-9. PMID:20921997[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Dugdale ML, Dymianiw DL, Minhas BK, D'Angelo I, Huber RE. Role of Met-542 as a guide for the conformational changes of Phe-601 that occur during the reaction of β-galactosidase (Escherichia coli). Biochem Cell Biol. 2010 Oct;88(5):861-9. PMID:20921997 doi:10.1139/O10-009
|