|
|
Line 3: |
Line 3: |
| <StructureSection load='3ift' size='340' side='right'caption='[[3ift]], [[Resolution|resolution]] 2.00Å' scene=''> | | <StructureSection load='3ift' size='340' side='right'caption='[[3ift]], [[Resolution|resolution]] 2.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3ift]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_tuberculosis"_(zopf_1883)_klein_1884 "bacillus tuberculosis" (zopf 1883) klein 1884]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3IFT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3IFT FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3ift]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycobacterium_tuberculosis Mycobacterium tuberculosis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3IFT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3IFT FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3hgb|3hgb]]</div></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GCHV, gcvH, MT1874, MTCY1A11.17c, Rv1826 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1773 "Bacillus tuberculosis" (Zopf 1883) Klein 1884])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ift FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ift OCA], [https://pdbe.org/3ift PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ift RCSB], [https://www.ebi.ac.uk/pdbsum/3ift PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ift ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ift FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ift OCA], [https://pdbe.org/3ift PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ift RCSB], [https://www.ebi.ac.uk/pdbsum/3ift PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ift ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/GCSH_MYCTU GCSH_MYCTU]] The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.[HAMAP-Rule:MF_00272]
| + | [https://www.uniprot.org/uniprot/GCSH_MYCTU GCSH_MYCTU] The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.[HAMAP-Rule:MF_00272] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 34: |
Line 33: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: ATCG3D, Accelerated Technologies Center for Gene to 3D Structure]] | + | [[Category: Mycobacterium tuberculosis]] |
- | [[Category: Abendroth, J]] | + | [[Category: Abendroth J]] |
- | [[Category: Analau, E]] | + | [[Category: Analau E]] |
- | [[Category: Edwards, T E]] | + | [[Category: Edwards TE]] |
- | [[Category: Kelley, A]] | + | [[Category: Kelley A]] |
- | [[Category: Leibly, D]] | + | [[Category: Leibly D]] |
- | [[Category: Loewen, R]] | + | [[Category: Loewen R]] |
- | [[Category: Mayer, C]] | + | [[Category: Mayer C]] |
- | [[Category: Phan, I]] | + | [[Category: Phan I]] |
- | [[Category: Rifkin, J]] | + | [[Category: Rifkin J]] |
- | [[Category: Ruth, R D]] | + | [[Category: Ruth RD]] |
- | [[Category: Staker, B]] | + | [[Category: Staker B]] |
- | [[Category: Stewart, L J]] | + | [[Category: Stewart LJ]] |
- | [[Category: Accelerated technologies center for gene to 3d structure]]
| + | |
- | [[Category: Atcg3d]]
| + | |
- | [[Category: Decode]]
| + | |
- | [[Category: Glycine cleavage system]]
| + | |
- | [[Category: Lipoyl]]
| + | |
- | [[Category: Methylamine binding protein]]
| + | |
- | [[Category: Niaid]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
- | [[Category: PSI, Protein structure initiative]]
| + | |
- | [[Category: Sbri]]
| + | |
- | [[Category: Structural genomic]]
| + | |
- | [[Category: Uw]]
| + | |
| Structural highlights
Function
GCSH_MYCTU The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.[HAMAP-Rule:MF_00272]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Structural genomics discovery projects require ready access to both X-ray diffraction and NMR spectroscopy which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large multi acre synchrotron facilities for data collection. In this paper we report on the development and use of the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam.
X-ray structure determination of the glycine cleavage system protein H of Mycobacterium tuberculosis using an inverse Compton synchrotron X-ray source.,Abendroth J, McCormick MS, Edwards TE, Staker B, Loewen R, Gifford M, Rifkin J, Mayer C, Guo W, Zhang Y, Myler P, Kelley A, Analau E, Hewitt SN, Napuli AJ, Kuhn P, Ruth RD, Stewart LJ J Struct Funct Genomics. 2010 Mar;11(1):91-100. Epub 2010 Apr 3. PMID:20364333[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Abendroth J, McCormick MS, Edwards TE, Staker B, Loewen R, Gifford M, Rifkin J, Mayer C, Guo W, Zhang Y, Myler P, Kelley A, Analau E, Hewitt SN, Napuli AJ, Kuhn P, Ruth RD, Stewart LJ. X-ray structure determination of the glycine cleavage system protein H of Mycobacterium tuberculosis using an inverse Compton synchrotron X-ray source. J Struct Funct Genomics. 2010 Mar;11(1):91-100. Epub 2010 Apr 3. PMID:20364333 doi:10.1007/s10969-010-9087-6
|