|
|
Line 3: |
Line 3: |
| <StructureSection load='3kof' size='340' side='right'caption='[[3kof]], [[Resolution|resolution]] 1.90Å' scene=''> | | <StructureSection load='3kof' size='340' side='right'caption='[[3kof]], [[Resolution|resolution]] 1.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3kof]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Ecoli Ecoli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3KOF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3KOF FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3kof]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3KOF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3KOF FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3cwn|3cwn]], [[1onr|1onr]], [[1i2n|1i2n]], [[1i2o|1i2o]], [[1i2p|1i2p]], [[1ucw|1ucw]], [[1i2r|1i2r]], [[1i2q|1i2q]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">talB, yaaK, b0008, JW0007 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr> | + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Transaldolase Transaldolase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.2.1.2 2.2.1.2] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3kof FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3kof OCA], [https://pdbe.org/3kof PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3kof RCSB], [https://www.ebi.ac.uk/pdbsum/3kof PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3kof ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3kof FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3kof OCA], [https://pdbe.org/3kof PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3kof RCSB], [https://www.ebi.ac.uk/pdbsum/3kof PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3kof ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/TALB_ECOLI TALB_ECOLI]] Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway.[HAMAP-Rule:MF_00492]
| + | [https://www.uniprot.org/uniprot/TALB_ECOLI TALB_ECOLI] Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway.[HAMAP-Rule:MF_00492] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 33: |
Line 31: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Transaldolase|Transaldolase]] | + | *[[Transaldolase 3D structures|Transaldolase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Ecoli]] | + | [[Category: Escherichia coli K-12]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Transaldolase]]
| + | [[Category: Clapes P]] |
- | [[Category: Clapes, P]] | + | [[Category: Gutierrez M]] |
- | [[Category: Gutierrez, M]] | + | [[Category: Samland AK]] |
- | [[Category: Samland, A K]] | + | [[Category: Sandalova T]] |
- | [[Category: Sandalova, T]] | + | [[Category: Schneider G]] |
- | [[Category: Schneider, G]] | + | [[Category: Schneider S]] |
- | [[Category: Schneider, S]] | + | [[Category: Sprenger GA]] |
- | [[Category: Sprenger, G A]] | + | |
- | [[Category: Aldolase]]
| + | |
- | [[Category: Cytoplasm]]
| + | |
- | [[Category: Directed evolution]]
| + | |
- | [[Category: Pentose shunt]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
TALB_ECOLI Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway.[HAMAP-Rule:MF_00492]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Recently, we reported on a transaldolase B variant (TalB F178Y) that is able to use dihydroxyacetone (DHA) as donor in aldol reactions. In a second round of protein engineering, we aimed at improving the affinity of this variant towards nonphosphorylated acceptor aldehydes, that is, glyceraldehyde (GA). The anion binding site was identified in the X-ray structure of TalB F178Y where a sulfate ion from the buffer was bound in the active site. Therefore, we performed site-directed saturation mutagenesis at three residues forming the putative phosphate binding site, Arg181, Ser226 and Arg228. The focused libraries were screened for the formation of D-fructose from DHA and d,l-GA by using an adjusted colour assay. The best results with respect to the synthesis of D-fructose were achieved with the TalB F178Y/R181E variant, which exhibited an at least fivefold increase in affinity towards d,l-GA (K(M)=24 mM). We demonstrated that this double mutant can use D-GA, glycolaldehyde and the L-isomer, L-GA, as acceptor substrates. This resulted in preparative synthesis of D-fructose, D-xylulose and L-sorbose when DHA was used as donor. Hence, we engineered a DHA-dependent aldolase that can synthesise the formation of polyhydroxylated compounds from simple and cheap substrates at preparative scale.
Redesigning the Active Site of Transaldolase TalB from Escherichia coli: New Variants with Improved Affinity towards Nonphosphorylated Substrates.,Schneider S, Gutierrez M, Sandalova T, Schneider G, Clapes P, Sprenger GA, Samland AK Chembiochem. 2010 Feb 10. PMID:20148428[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Schneider S, Gutierrez M, Sandalova T, Schneider G, Clapes P, Sprenger GA, Samland AK. Redesigning the Active Site of Transaldolase TalB from Escherichia coli: New Variants with Improved Affinity towards Nonphosphorylated Substrates. Chembiochem. 2010 Feb 10. PMID:20148428 doi:10.1002/cbic.200900720
|