|
|
Line 1: |
Line 1: |
| | | |
| ==TCR 21.30 in complex with MHC class II I-Ag7HEL(11-27)== | | ==TCR 21.30 in complex with MHC class II I-Ag7HEL(11-27)== |
- | <StructureSection load='3mbe' size='340' side='right' caption='[[3mbe]], [[Resolution|resolution]] 2.89Å' scene=''> | + | <StructureSection load='3mbe' size='340' side='right'caption='[[3mbe]], [[Resolution|resolution]] 2.89Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3mbe]] is a 10 chain structure with sequence from [http://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3MBE OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3MBE FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3mbe]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3MBE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3MBE FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.886Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">H2-Aa ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice]), H2-Ab1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3mbe FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3mbe OCA], [http://pdbe.org/3mbe PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3mbe RCSB], [http://www.ebi.ac.uk/pdbsum/3mbe PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3mbe ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3mbe FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3mbe OCA], [https://pdbe.org/3mbe PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3mbe RCSB], [https://www.ebi.ac.uk/pdbsum/3mbe PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3mbe ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/LYSC_CHICK LYSC_CHICK]] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.<ref>PMID:22044478</ref> | + | [https://www.uniprot.org/uniprot/HA2D_MOUSE HA2D_MOUSE] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 29: |
Line 29: |
| </div> | | </div> |
| <div class="pdbe-citations 3mbe" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 3mbe" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[MHC 3D structures|MHC 3D structures]] |
| + | *[[MHC II 3D structures|MHC II 3D structures]] |
| + | *[[T-cell receptor 3D structures|T-cell receptor 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Lk3 transgenic mice]] | + | [[Category: Gallus gallus]] |
- | [[Category: Corper, A L]] | + | [[Category: Large Structures]] |
- | [[Category: Teyton, L]] | + | [[Category: Mus musculus]] |
- | [[Category: Wilson, I A]] | + | [[Category: Corper AL]] |
- | [[Category: Yoshida, K]] | + | [[Category: Teyton L]] |
- | [[Category: Histocompatability antigen]] | + | [[Category: Wilson IA]] |
- | [[Category: I-ag7]] | + | [[Category: Yoshida K]] |
- | [[Category: Immune system]]
| + | |
- | [[Category: Mhc class ii]]
| + | |
- | [[Category: T cell receptor]]
| + | |
| Structural highlights
Function
HA2D_MOUSE
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Genetic susceptibility to autoimmunity is frequently associated with specific MHC alleles. Diabetogenic MHC class II molecules, such as human HLA-DQ8 and mouse I-Ag7, typically have a small, uncharged amino acid residue at position 57 of their beta chain (beta57); this results in the absence of a salt bridge between beta57 and Argalpha76, which is adjacent to the P9 pocket of the peptide-binding groove. However, the influence of Argalpha76 on the selection of the TCR repertoire remains unknown, particularly when the MHC molecule binds a peptide with a neutral amino acid residue at position P9. Here, we have shown that diabetogenic MHC class II molecules bound to a peptide with a neutral P9 residue primarily selected and expanded cells expressing TCRs bearing a negatively charged residue in the first segment of their complementarity determining region 3beta. The crystal structure of one such TCR in complex with I-Ag7 bound to a peptide containing a neutral P9 residue revealed that a network of favorable long-range (greater than 4 A) electrostatic interactions existed among Argalpha76, the neutral P9 residue, and TCR, which supported the substantially increased TCR/peptide-MHC affinity. This network could be modulated or switched to a lower affinity interaction by the introduction of a negative charge at position P9 of the peptide. Our results support the existence of a switch at residue beta57 of the I-Ag7 and HLA-DQ8 class II molecules and potentially link normal thymic TCR selection with abnormal peripheral behavior.
The diabetogenic mouse MHC class II molecule I-Ag7 is endowed with a switch that modulates TCR affinity.,Yoshida K, Corper AL, Herro R, Jabri B, Wilson IA, Teyton L J Clin Invest. 2010 May 3;120(5):1578-90. doi: 10.1172/JCI41502. Epub 2010, Apr 19. PMID:20407212[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Yoshida K, Corper AL, Herro R, Jabri B, Wilson IA, Teyton L. The diabetogenic mouse MHC class II molecule I-Ag7 is endowed with a switch that modulates TCR affinity. J Clin Invest. 2010 May 3;120(5):1578-90. doi: 10.1172/JCI41502. Epub 2010, Apr 19. PMID:20407212
|