|
|
Line 3: |
Line 3: |
| <StructureSection load='5jg3' size='340' side='right'caption='[[5jg3]], [[Resolution|resolution]] 1.21Å' scene=''> | | <StructureSection load='5jg3' size='340' side='right'caption='[[5jg3]], [[Resolution|resolution]] 1.21Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5jg3]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5JG3 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5JG3 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5jg3]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5JG3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5JG3 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EVF:1,3-BENZOTHIAZOLE-2-SULFONAMIDE'>EVF</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.21Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5jdv|5jdv]], [[5je7|5je7]], [[5jeg|5jeg]], [[5jeh|5jeh]], [[5jep|5jep]], [[5jes|5jes]], [[5jg5|5jg5]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EVF:1,3-BENZOTHIAZOLE-2-SULFONAMIDE'>EVF</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CA2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5jg3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5jg3 OCA], [https://pdbe.org/5jg3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5jg3 RCSB], [https://www.ebi.ac.uk/pdbsum/5jg3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5jg3 ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Carbonate_dehydratase Carbonate dehydratase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.1 4.2.1.1] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5jg3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5jg3 OCA], [http://pdbe.org/5jg3 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5jg3 RCSB], [http://www.ebi.ac.uk/pdbsum/5jg3 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5jg3 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[http://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN]] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:[http://omim.org/entry/259730 259730]]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.<ref>PMID:1928091</ref> <ref>PMID:1542674</ref> <ref>PMID:8834238</ref> <ref>PMID:9143915</ref> <ref>PMID:15300855</ref> | + | [https://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:[https://omim.org/entry/259730 259730]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.<ref>PMID:1928091</ref> <ref>PMID:1542674</ref> <ref>PMID:8834238</ref> <ref>PMID:9143915</ref> <ref>PMID:15300855</ref> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN]] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.<ref>PMID:10550681</ref> <ref>PMID:11831900</ref> | + | [https://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.<ref>PMID:10550681</ref> <ref>PMID:11831900</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 30: |
Line 28: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Carbonate dehydratase]] | + | [[Category: Homo sapiens]] |
- | [[Category: Human]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Fox, J M]] | + | [[Category: Fox JM]] |
- | [[Category: Kang, K]] | + | [[Category: Kang K]] |
- | [[Category: Sankaran, B]] | + | [[Category: Sankaran B]] |
- | [[Category: Sastry, M]] | + | [[Category: Sastry M]] |
- | [[Category: Sherman, W]] | + | [[Category: Sherman W]] |
- | [[Category: Whitesides, G M]] | + | [[Category: Whitesides GM]] |
- | [[Category: Zwart, P H]] | + | [[Category: Zwart PH]] |
- | [[Category: Anhydrase]]
| + | |
- | [[Category: Hydrophobic]]
| + | |
- | [[Category: Lyase]]
| + | |
- | [[Category: Mutant]]
| + | |
| Structural highlights
Disease
CAH2_HUMAN Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1] [2] [3] [4] [5]
Function
CAH2_HUMAN Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6] [7]
Publication Abstract from PubMed
This study uses mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein-ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations strengthen networks of water-mediated hydrogen bonds and reduce binding affinity by increasing the enthalpic cost and, to a lesser extent, the entropic benefit of rearranging those networks during binding. The organization of water within a binding pocket can thus determine whether the hydrophobic interactions in which it engages are enthalpy-driven or entropy-driven. Our findings highlight a possible asymmetry in protein-ligand association by suggesting that, within the confines of the binding pocket of HCAII, binding events associated with enthalpically favorable rearrangements of water are stronger than those associated with entropically favorable ones.
Water-Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase.,Fox JM, Kang K, Sastry M, Sherman W, Sankaran B, Zwart PH, Whitesides GM Angew Chem Int Ed Engl. 2017 Mar 2. doi: 10.1002/anie.201609409. PMID:28252841[8]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His----Tyr): complete structure of the normal human CA II gene. Am J Hum Genet. 1991 Nov;49(5):1082-90. PMID:1928091
- ↑ Roth DE, Venta PJ, Tashian RE, Sly WS. Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1804-8. PMID:1542674
- ↑ Soda H, Yukizane S, Yoshida I, Koga Y, Aramaki S, Kato H. A point mutation in exon 3 (His 107-->Tyr) in two unrelated Japanese patients with carbonic anhydrase II deficiency with central nervous system involvement. Hum Genet. 1996 Apr;97(4):435-7. PMID:8834238
- ↑ Hu PY, Lim EJ, Ciccolella J, Strisciuglio P, Sly WS. Seven novel mutations in carbonic anhydrase II deficiency syndrome identified by SSCP and direct sequencing analysis. Hum Mutat. 1997;9(5):383-7. PMID:9143915 doi:<383::AID-HUMU1>3.0.CO;2-5 10.1002/(SICI)1098-1004(1997)9:5<383::AID-HUMU1>3.0.CO;2-5
- ↑ Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004 Sep;24(3):272. PMID:15300855 doi:10.1002/humu.9266
- ↑ Briganti F, Mangani S, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase catalyzes cyanamide hydration to urea: is it mimicking the physiological reaction? J Biol Inorg Chem. 1999 Oct;4(5):528-36. PMID:10550681
- ↑ Kim CY, Whittington DA, Chang JS, Liao J, May JA, Christianson DW. Structural aspects of isozyme selectivity in the binding of inhibitors to carbonic anhydrases II and IV. J Med Chem. 2002 Feb 14;45(4):888-93. PMID:11831900
- ↑ Fox JM, Kang K, Sastry M, Sherman W, Sankaran B, Zwart PH, Whitesides GM. Water-Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase. Angew Chem Int Ed Engl. 2017 Mar 2. doi: 10.1002/anie.201609409. PMID:28252841 doi:http://dx.doi.org/10.1002/anie.201609409
|