|
|
Line 3: |
Line 3: |
| <StructureSection load='5k3a' size='340' side='right'caption='[[5k3a]], [[Resolution|resolution]] 1.51Å' scene=''> | | <StructureSection load='5k3a' size='340' side='right'caption='[[5k3a]], [[Resolution|resolution]] 1.51Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5k3a]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Rhopa Rhopa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5K3A OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5K3A FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5k3a]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Rhodopseudomonas_palustris_CGA009 Rhodopseudomonas palustris CGA009]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5K3A OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5K3A FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.511Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=ASB:ASPARTIC+ACID-4-CARBOXYMETHYL+ESTER'>ASB</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ASB:ASPARTIC+ACID-4-CARBOXYMETHYL+ESTER'>ASB</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5k3b|5k3b]], [[5k3c|5k3c]], [[5k3d|5k3d]], [[5k3f|5k3f]], [[5k3e|5k3e]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5k3a FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5k3a OCA], [https://pdbe.org/5k3a PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5k3a RCSB], [https://www.ebi.ac.uk/pdbsum/5k3a PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5k3a ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">RPA1163 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=258594 RHOPA])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Haloacetate_dehalogenase Haloacetate dehalogenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.8.1.3 3.8.1.3] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5k3a FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5k3a OCA], [http://pdbe.org/5k3a PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5k3a RCSB], [http://www.ebi.ac.uk/pdbsum/5k3a PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5k3a ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/DEHA_RHOPA DEHA_RHOPA]] Catalyzes the hydrolytic defluorination of fluoroacetate to produce glycolate. Has lower activity towards bromoacetate and chloroacetate.<ref>PMID:21510690</ref> <ref>PMID:21510690</ref> | + | [https://www.uniprot.org/uniprot/DEHA_RHOPA DEHA_RHOPA] Catalyzes the hydrolytic defluorination of fluoroacetate to produce glycolate. Has lower activity towards bromoacetate and chloroacetate.<ref>PMID:21510690</ref> <ref>PMID:21510690</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 29: |
Line 26: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Haloacetate dehalogenase]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Rhopa]] | + | [[Category: Rhodopseudomonas palustris CGA009]] |
- | [[Category: Kim, T H]] | + | [[Category: Kim TH]] |
- | [[Category: Mehrabi, P]] | + | [[Category: Mehrabi P]] |
- | [[Category: Pai, E F]] | + | [[Category: Pai EF]] |
- | [[Category: Prosser, S R]] | + | [[Category: Prosser SR]] |
- | [[Category: Dehalogenase]]
| + | |
- | [[Category: Homodimer]]
| + | |
- | [[Category: Hydrolase]]
| + | |
| Structural highlights
Function
DEHA_RHOPA Catalyzes the hydrolytic defluorination of fluoroacetate to produce glycolate. Has lower activity towards bromoacetate and chloroacetate.[1] [2]
Publication Abstract from PubMed
Freeze-trapping x-ray crystallography, nuclear magnetic resonance, and computational techniques reveal the distribution of states and their interconversion rates along the reaction pathway of a bacterial homodimeric enzyme, fluoroacetate dehalogenase (FAcD). The crystal structure of apo-FAcD exhibits asymmetry around the dimer interface and cap domain, priming one protomer for substrate binding. This asymmetry is dynamically averaged through conformational exchange on a millisecond time scale. During catalysis, the protomer conformational exchange rate becomes enhanced, the empty protomer exhibits increased local disorder, and water egresses. Computational studies identify allosteric pathways between protomers. Water release and enhanced dynamics associated with catalysis compensate for entropic losses from substrate binding while facilitating sampling of the transition state. The studies provide insights into how substrate-coupled allosteric modulation of structure and dynamics facilitates catalysis in a homodimeric enzyme.
The role of dimer asymmetry and protomer dynamics in enzyme catalysis.,Kim TH, Mehrabi P, Ren Z, Sljoka A, Ing C, Bezginov A, Ye L, Pomes R, Prosser RS, Pai EF Science. 2017 Jan 20;355(6322). pii: eaag2355. doi: 10.1126/science.aag2355. PMID:28104837[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Chan PW, Yakunin AF, Edwards EA, Pai EF. Mapping the Reaction Coordinates of Enzymatic Defluorination. J Am Chem Soc. 2011 Apr 21. PMID:21510690 doi:10.1021/ja200277d
- ↑ Chan PW, Yakunin AF, Edwards EA, Pai EF. Mapping the Reaction Coordinates of Enzymatic Defluorination. J Am Chem Soc. 2011 Apr 21. PMID:21510690 doi:10.1021/ja200277d
- ↑ Kim TH, Mehrabi P, Ren Z, Sljoka A, Ing C, Bezginov A, Ye L, Pomes R, Prosser RS, Pai EF. The role of dimer asymmetry and protomer dynamics in enzyme catalysis. Science. 2017 Jan 20;355(6322). pii: eaag2355. doi: 10.1126/science.aag2355. PMID:28104837 doi:http://dx.doi.org/10.1126/science.aag2355
|