|
|
Line 3: |
Line 3: |
| <StructureSection load='5k2f' size='340' side='right'caption='[[5k2f]], [[Resolution|resolution]] 1.00Å' scene=''> | | <StructureSection load='5k2f' size='340' side='right'caption='[[5k2f]], [[Resolution|resolution]] 1.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5k2f]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5K2F OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5K2F FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5k2f]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5K2F OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5K2F FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CD:CADMIUM+ION'>CD</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron crystallography, [[Resolution|Resolution]] 1Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[5k2e|5k2e]], [[5k2g|5k2g]], [[5k2h|5k2h]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CD:CADMIUM+ION'>CD</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5k2f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5k2f OCA], [https://pdbe.org/5k2f PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5k2f RCSB], [https://www.ebi.ac.uk/pdbsum/5k2f PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5k2f ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5k2f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5k2f OCA], [https://pdbe.org/5k2f PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5k2f RCSB], [https://www.ebi.ac.uk/pdbsum/5k2f PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5k2f ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/ERF3_YEAST ERF3_YEAST]] Involved in translation termination. Stimulates the activity of ERF1. Binds guanine nucleotides. Recruited by polyadenylate-binding protein PAB1 to poly(A)-tails of mRNAs. Interaction with PAB1 is also required for regulation of normal mRNA decay through translation termination-coupled poly(A) shortening.<ref>PMID:7556078</ref> <ref>PMID:12923185</ref> <ref>PMID:15337765</ref>
| + | [https://www.uniprot.org/uniprot/ERF3_YEAST ERF3_YEAST] Involved in translation termination. Stimulates the activity of ERF1. Binds guanine nucleotides. Recruited by polyadenylate-binding protein PAB1 to poly(A)-tails of mRNAs. Interaction with PAB1 is also required for regulation of normal mRNA decay through translation termination-coupled poly(A) shortening.<ref>PMID:7556078</ref> <ref>PMID:12923185</ref> <ref>PMID:15337765</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 24: |
Line 24: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Cascio, D]] | + | [[Category: Saccharomyces cerevisiae]] |
- | [[Category: Eisenberg, D S]] | + | [[Category: Cascio D]] |
- | [[Category: Rodriguez, J A]] | + | [[Category: Eisenberg DS]] |
- | [[Category: Sawaya, M R]] | + | [[Category: Rodriguez JA]] |
- | [[Category: Amyloid]] | + | [[Category: Sawaya MR]] |
- | [[Category: Protein fibril]]
| + | |
- | [[Category: Yeast prion]]
| + | |
| Structural highlights
Function
ERF3_YEAST Involved in translation termination. Stimulates the activity of ERF1. Binds guanine nucleotides. Recruited by polyadenylate-binding protein PAB1 to poly(A)-tails of mRNAs. Interaction with PAB1 is also required for regulation of normal mRNA decay through translation termination-coupled poly(A) shortening.[1] [2] [3]
Publication Abstract from PubMed
Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstacle is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined. We show with four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods.
Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED.,Sawaya MR, Rodriguez J, Cascio D, Collazo MJ, Shi D, Reyes FE, Hattne J, Gonen T, Eisenberg DS Proc Natl Acad Sci U S A. 2016 Sep 19. pii: 201606287. PMID:27647903[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 1995 Sep 1;14(17):4365-73. PMID:7556078
- ↑ Hosoda N, Kobayashi T, Uchida N, Funakoshi Y, Kikuchi Y, Hoshino S, Katada T. Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J Biol Chem. 2003 Oct 3;278(40):38287-91. Epub 2003 Aug 15. PMID:12923185 doi:http://dx.doi.org/10.1074/jbc.C300300200
- ↑ Kobayashi T, Funakoshi Y, Hoshino S, Katada T. The GTP-binding release factor eRF3 as a key mediator coupling translation termination to mRNA decay. J Biol Chem. 2004 Oct 29;279(44):45693-700. Epub 2004 Aug 26. PMID:15337765 doi:http://dx.doi.org/10.1074/jbc.M405163200
- ↑ Sawaya MR, Rodriguez J, Cascio D, Collazo MJ, Shi D, Reyes FE, Hattne J, Gonen T, Eisenberg DS. Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED. Proc Natl Acad Sci U S A. 2016 Sep 19. pii: 201606287. PMID:27647903 doi:http://dx.doi.org/10.1073/pnas.1606287113
|