|
|
Line 1: |
Line 1: |
| | | |
| ==Structure of Caulobacter crescentus VapBC1 (apo form)== | | ==Structure of Caulobacter crescentus VapBC1 (apo form)== |
- | <StructureSection load='5k8j' size='340' side='right' caption='[[5k8j]], [[Resolution|resolution]] 1.60Å' scene=''> | + | <StructureSection load='5k8j' size='340' side='right'caption='[[5k8j]], [[Resolution|resolution]] 1.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5k8j]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Caucr Caucr]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5K8J OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5K8J FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5k8j]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Caulobacter_vibrioides_CB15 Caulobacter vibrioides CB15]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5K8J OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5K8J FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5l6l|5l6l]], [[5l6m|5l6m]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5k8j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5k8j OCA], [https://pdbe.org/5k8j PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5k8j RCSB], [https://www.ebi.ac.uk/pdbsum/5k8j PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5k8j ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CC_0032 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=190650 CAUCR]), vapC, CC_0031 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=190650 CAUCR])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5k8j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5k8j OCA], [http://pdbe.org/5k8j PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5k8j RCSB], [http://www.ebi.ac.uk/pdbsum/5k8j PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5k8j ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/Q9AC35_CAUCR Q9AC35_CAUCR]] Toxic component of a toxin-antitoxin (TA) module. An RNase.[HAMAP-Rule:MF_00265] | + | [https://www.uniprot.org/uniprot/Q9AC34_CAUVC Q9AC34_CAUVC] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 5k8j" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 5k8j" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Ribonuclease 3D structures|Ribonuclease 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Caucr]] | + | [[Category: Caulobacter vibrioides CB15]] |
- | [[Category: Bendtsen, K L]] | + | [[Category: Large Structures]] |
- | [[Category: Brodersen, D E]] | + | [[Category: Bendtsen KL]] |
- | [[Category: Luckmann, M]] | + | [[Category: Brodersen DE]] |
- | [[Category: Xu, K]] | + | [[Category: Luckmann M]] |
- | [[Category: Dna-binding]] | + | [[Category: Xu K]] |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Pin domain]]
| + | |
- | [[Category: Ribonuclease]]
| + | |
- | [[Category: Toxin-antitoxin]]
| + | |
| Structural highlights
Function
Q9AC34_CAUVC
Publication Abstract from PubMed
Expression of bacterial type II toxin-antitoxin (TA) systems is regulated at the transcriptional level through direct binding of the antitoxin to pseudo-palindromic sequences on operator DNA. In this context, the toxin functions as a co-repressor by stimulating DNA binding through direct interaction with the antitoxin. Here, we determine crystal structures of the complete 90 kDa heterooctameric VapBC1 complex from Caulobacter crescentus CB15 both in isolation and bound to its cognate DNA operator sequence at 1.6 and 2.7 A resolution, respectively. DNA binding is associated with a dramatic architectural rearrangement of conserved TA interactions in which C-terminal extended structures of the antitoxin VapB1 swap positions to interlock the complex in the DNA-bound state. We further show that a pseudo-palindromic protein sequence in the antitoxin is responsible for this interaction and required for binding and inactivation of the VapC1 toxin dimer. Sequence analysis of 4127 orthologous VapB sequences reveals that such palindromic protein sequences are widespread and unique to bacterial and archaeal VapB antitoxins suggesting a general principle governing regulation of VapBC TA systems. Finally, a structure of C-terminally truncated VapB1 bound to VapC1 reveals discrete states of the TA interaction that suggest a structural basis for toxin activation in vivo.
Toxin inhibition in C. crescentus VapBC1 is mediated by a flexible pseudo-palindromic protein motif and modulated by DNA binding.,Bendtsen KL, Xu K, Luckmann M, Winther KS, Shah SA, Pedersen CN, Brodersen DE Nucleic Acids Res. 2016 Dec 19. pii: gkw1266. doi: 10.1093/nar/gkw1266. PMID:27998932[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Bendtsen KL, Xu K, Luckmann M, Winther KS, Shah SA, Pedersen CN, Brodersen DE. Toxin inhibition in C. crescentus VapBC1 is mediated by a flexible pseudo-palindromic protein motif and modulated by DNA binding. Nucleic Acids Res. 2016 Dec 19. pii: gkw1266. doi: 10.1093/nar/gkw1266. PMID:27998932 doi:http://dx.doi.org/10.1093/nar/gkw1266
|