|
|
Line 3: |
Line 3: |
| <StructureSection load='5ku1' size='340' side='right'caption='[[5ku1]], [[Resolution|resolution]] 2.50Å' scene=''> | | <StructureSection load='5ku1' size='340' side='right'caption='[[5ku1]], [[Resolution|resolution]] 2.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5ku1]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5KU1 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5KU1 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5ku1]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5KU1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5KU1 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.501Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5kso|5kso]], [[5ksp|5ksp]], [[5ksy|5ksy]], [[5ksz|5ksz]], [[5kty|5kty]], [[5kut|5kut]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">RHOT1, ARHT1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ku1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ku1 OCA], [https://pdbe.org/5ku1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ku1 RCSB], [https://www.ebi.ac.uk/pdbsum/5ku1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ku1 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5ku1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ku1 OCA], [http://pdbe.org/5ku1 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5ku1 RCSB], [http://www.ebi.ac.uk/pdbsum/5ku1 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5ku1 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/MIRO1_HUMAN MIRO1_HUMAN]] Mitochondrial GTPase involved in mitochondrial trafficking. Probably involved in control of anterograde transport of mitochondria and their subcellular distribution.<ref>PMID:12482879</ref> <ref>PMID:16630562</ref> | + | [https://www.uniprot.org/uniprot/MIRO1_HUMAN MIRO1_HUMAN] Mitochondrial GTPase involved in mitochondrial trafficking. Probably involved in control of anterograde transport of mitochondria and their subcellular distribution.<ref>PMID:12482879</ref> <ref>PMID:16630562</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 27: |
Line 26: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Focia, P J]] | + | [[Category: Focia PJ]] |
- | [[Category: Freymann, D M]] | + | [[Category: Freymann DM]] |
- | [[Category: Klosowiak, J L]] | + | [[Category: Klosowiak JL]] |
- | [[Category: Rice, S E]] | + | [[Category: Rice SE]] |
- | [[Category: Gtpase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Miro]]
| + | |
- | [[Category: Mitochondria]]
| + | |
- | [[Category: Parkin]]
| + | |
| Structural highlights
Function
MIRO1_HUMAN Mitochondrial GTPase involved in mitochondrial trafficking. Probably involved in control of anterograde transport of mitochondria and their subcellular distribution.[1] [2]
Publication Abstract from PubMed
Hereditary Parkinson's disease is commonly caused by mutations in the protein kinase PINK1 or the E3 ubiquitin ligase Parkin, which function together to eliminate damaged mitochondria. PINK1 phosphorylates both Parkin and ubiquitin to stimulate ubiquitination of dozens of proteins on the surface of the outer mitochondrial membrane. However, the mechanisms by which Parkin recognizes specific proteins for modification remain largely unexplored. Here, we show that the C-terminal GTPase (cGTPase) of the Parkin primary substrate human Miro is necessary and sufficient for efficient ubiquitination. We present several new X-ray crystal structures of both human Miro1 and Miro2 that reveal substrate recognition and ubiquitin transfer to be specific to particular protein domains and lysine residues. We also provide evidence that Parkin substrate recognition is functionally separate from substrate modification. Finally, we show that prioritization for modification of a specific lysine sidechain of the cGTPase (K572) within human Miro1 is dependent on both its location and chemical microenvironment. Activation of Parkin by phosphorylation or by binding of pUb is required for prioritization of K572 for modification, suggesting that Parkin activation and acquisition of substrate specificity are coupled.
Structural insights into Parkin substrate lysine targeting from minimal Miro substrates.,Klosowiak JL, Park S, Smith KP, French ME, Focia PJ, Freymann DM, Rice SE Sci Rep. 2016 Sep 8;6:33019. doi: 10.1038/srep33019. PMID:27605430[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Fransson A, Ruusala A, Aspenstrom P. Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J Biol Chem. 2003 Feb 21;278(8):6495-502. Epub 2002 Dec 12. PMID:12482879 doi:http://dx.doi.org/10.1074/jbc.M208609200
- ↑ Fransson S, Ruusala A, Aspenstrom P. The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun. 2006 Jun 2;344(2):500-10. Epub 2006 Apr 3. PMID:16630562 doi:http://dx.doi.org/10.1016/j.bbrc.2006.03.163
- ↑ Klosowiak JL, Park S, Smith KP, French ME, Focia PJ, Freymann DM, Rice SE. Structural insights into Parkin substrate lysine targeting from minimal Miro substrates. Sci Rep. 2016 Sep 8;6:33019. doi: 10.1038/srep33019. PMID:27605430 doi:http://dx.doi.org/10.1038/srep33019
|