|
|
Line 3: |
Line 3: |
| <StructureSection load='5t9a' size='340' side='right'caption='[[5t9a]], [[Resolution|resolution]] 2.50Å' scene=''> | | <StructureSection load='5t9a' size='340' side='right'caption='[[5t9a]], [[Resolution|resolution]] 2.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5t9a]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_8492 Atcc 8492]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5T9A OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5T9A FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5t9a]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacteroides_uniformis Bacteroides uniformis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5T9A OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5T9A FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5t98|5t98]], [[5t99|5t99]], [[5t9g|5t9g]], [[5t9x|5t9x]], [[5ta0|5ta0]], [[5ta1|5ta1]], [[5ta5|5ta5]], [[5ta7|5ta7]], [[5ta9|5ta9]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5t9a FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5t9a OCA], [http://pdbe.org/5t9a PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5t9a RCSB], [http://www.ebi.ac.uk/pdbsum/5t9a PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5t9a ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5t9a FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5t9a OCA], [https://pdbe.org/5t9a PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5t9a RCSB], [https://www.ebi.ac.uk/pdbsum/5t9a PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5t9a ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/A0A2D0TCC9_BACUN A0A2D0TCC9_BACUN] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 8492]] | + | [[Category: Bacteroides uniformis]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Abbott, W D]] | + | [[Category: Abbott WD]] |
- | [[Category: Boraston, A B]] | + | [[Category: Boraston AB]] |
- | [[Category: Pluvinage, B]] | + | [[Category: Pluvinage B]] |
- | [[Category: Glycoside hydrolase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
| Structural highlights
Function
A0A2D0TCC9_BACUN
Publication Abstract from PubMed
In red algae, the most abundant principal cell wall polysaccharides are mixed galactan agars, of which agarose is a common component. While bioconversion of agarose is predominantly catalyzed by bacteria that live in the oceans, agarases have been discovered in microorganisms that inhabit diverse terrestrial ecosystems, including human intestines. Here we comprehensively define the structure-function relationship of the agarolytic pathway from the human intestinal bacterium Bacteroides uniformis (Bu) NP1. Using recombinant agarases from Bu NP1 to completely depolymerize agarose, we demonstrate that a non-agarolytic Bu strain can grow on GAL released from agarose. This relationship underscores that rare nutrient utilization by intestinal bacteria is facilitated by the acquisition of highly specific enzymes that unlock inaccessible carbohydrate resources contained within unusual polysaccharides. Intriguingly, the agarolytic pathway is differentially distributed throughout geographically distinct human microbiomes, reflecting a complex historical context for agarose consumption by human beings.
Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont.,Pluvinage B, Grondin JM, Amundsen C, Klassen L, Moote PE, Xiao Y, Thomas D, Pudlo NA, Anele A, Martens EC, Inglis GD, Uwiera RER, Boraston AB, Abbott DW Nat Commun. 2018 Mar 13;9(1):1043. doi: 10.1038/s41467-018-03366-x. PMID:29535379[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Pluvinage B, Grondin JM, Amundsen C, Klassen L, Moote PE, Xiao Y, Thomas D, Pudlo NA, Anele A, Martens EC, Inglis GD, Uwiera RER, Boraston AB, Abbott DW. Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun. 2018 Mar 13;9(1):1043. doi: 10.1038/s41467-018-03366-x. PMID:29535379 doi:http://dx.doi.org/10.1038/s41467-018-03366-x
|