|
|
| Line 3: |
Line 3: |
| | <StructureSection load='5tvu' size='340' side='right'caption='[[5tvu]], [[Resolution|resolution]] 3.50Å' scene=''> | | <StructureSection load='5tvu' size='340' side='right'caption='[[5tvu]], [[Resolution|resolution]] 3.50Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[5tvu]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Brachidanio_rerio Brachidanio rerio]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5TVU OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5TVU FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5tvu]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Danio_rerio Danio rerio]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5TVU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5TVU FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.5Å</td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5tvw|5tvw]], [[5tvx|5tvx]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene></td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">trap1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=7955 Brachidanio rerio])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5tvu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5tvu OCA], [https://pdbe.org/5tvu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5tvu RCSB], [https://www.ebi.ac.uk/pdbsum/5tvu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5tvu ProSAT]</span></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5tvu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5tvu OCA], [http://pdbe.org/5tvu PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5tvu RCSB], [http://www.ebi.ac.uk/pdbsum/5tvu PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5tvu ProSAT]</span></td></tr> | + | |
| | </table> | | </table> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/F1Q9X9_DANRE F1Q9X9_DANRE] |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 22: |
Line 23: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Brachidanio rerio]] | + | [[Category: Danio rerio]] |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Agard, D A]] | + | [[Category: Agard DA]] |
| - | [[Category: Betegon, M]] | + | [[Category: Betegon M]] |
| - | [[Category: Elnatan, D]] | + | [[Category: Elnatan D]] |
| - | [[Category: Atp]]
| + | |
| - | [[Category: Chaperone]]
| + | |
| - | [[Category: Hsp90]]
| + | |
| - | [[Category: PSI, Protein structure initiative]]
| + | |
| - | [[Category: Structural genomic]]
| + | |
| - | [[Category: Trap1]]
| + | |
| Structural highlights
Function
F1Q9X9_DANRE
Publication Abstract from PubMed
Hsp90 is a homodimeric ATP-dependent molecular chaperone that remodels its substrate 'client' proteins, facilitating their folding and activating them for biological function. Despite decades of research, the mechanism connecting ATP hydrolysis and chaperone function remains elusive. Particularly puzzling has been the apparent lack of cooperativity in hydrolysis of the ATP in each protomer. A crystal structure of the mitochondrial Hsp90, TRAP1, revealed that the catalytically active state is closed in a highly strained asymmetric conformation. This asymmetry, unobserved in other Hsp90 homologs, is due to buckling of one of the protomers and is most pronounced at the broadly conserved client-binding region. Here, we show that rather than being cooperative or independent, ATP hydrolysis on the two protomers is sequential and deterministic. Moreover, dimer asymmetry sets up differential hydrolysis rates for each protomer, such that the buckled conformation favors ATP hydrolysis. Remarkably, after the first hydrolysis, the dimer undergoes a flip in the asymmetry while remaining in a closed state for the second hydrolysis. From these results, we propose a model where direct coupling of ATP hydrolysis and conformational flipping rearranges client-binding sites, providing a paradigm of how energy from ATP hydrolysis can be used for client remodeling.
Symmetry broken and rebroken during the ATP hydrolysis cycle of the mitochondrial Hsp90 TRAP1.,Elnatan D, Betegon M, Liu Y, Ramelot T, Kennedy MA, Agard DA Elife. 2017 Jul 25;6. pii: e25235. doi: 10.7554/eLife.25235. PMID:28742020[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Elnatan D, Betegon M, Liu Y, Ramelot T, Kennedy MA, Agard DA. Symmetry broken and rebroken during the ATP hydrolysis cycle of the mitochondrial Hsp90 TRAP1. Elife. 2017 Jul 25;6. pii: e25235. doi: 10.7554/eLife.25235. PMID:28742020 doi:http://dx.doi.org/10.7554/eLife.25235
|