|
|
Line 1: |
Line 1: |
| | | |
| ==Dimeric crystal structure of HTPA reductase from arabidopsis thaliana== | | ==Dimeric crystal structure of HTPA reductase from arabidopsis thaliana== |
- | <StructureSection load='5ua0' size='340' side='right' caption='[[5ua0]], [[Resolution|resolution]] 2.30Å' scene=''> | + | <StructureSection load='5ua0' size='340' side='right'caption='[[5ua0]], [[Resolution|resolution]] 2.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5ua0]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Arath Arath]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5UA0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5UA0 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5ua0]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Arabidopsis_thaliana Arabidopsis thaliana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5UA0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5UA0 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">DAPB2, At3g59890, F24G16.160 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=3702 ARATH])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/4-hydroxy-tetrahydrodipicolinate_reductase 4-hydroxy-tetrahydrodipicolinate reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.17.1.8 1.17.1.8] </span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ua0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ua0 OCA], [https://pdbe.org/5ua0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ua0 RCSB], [https://www.ebi.ac.uk/pdbsum/5ua0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ua0 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ua0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ua0 OCA], [http://pdbe.org/5ua0 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5ua0 RCSB], [http://www.ebi.ac.uk/pdbsum/5ua0 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5ua0 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/DAPB2_ARATH DAPB2_ARATH]] Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate.<ref>PMID:15652176</ref> | + | [https://www.uniprot.org/uniprot/DAPB2_ARATH DAPB2_ARATH] Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate.<ref>PMID:15652176</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 24: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: 4-hydroxy-tetrahydrodipicolinate reductase]] | + | [[Category: Arabidopsis thaliana]] |
- | [[Category: Arath]] | + | [[Category: Large Structures]] |
- | [[Category: Goldstone, D C]] | + | [[Category: Goldstone DC]] |
- | [[Category: Keown, J K]] | + | [[Category: Keown JK]] |
- | [[Category: Pearce, F G]] | + | [[Category: Pearce FG]] |
- | [[Category: Htpa reductase dhdpr lysine biosynthesis]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
| Structural highlights
Function
DAPB2_ARATH Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate.[1]
Publication Abstract from PubMed
Dihydrodipicolinate reductase (DHDPR) catalyses the second reaction in the diaminopimelate pathway of lysine biosynthesis in bacteria and plants. In contrast to the tetrameric bacterial DHDPR enzymes, we show that DHDPR from Vitis vinifera (grape) and Selaginella moellendorffii are dimeric in solution. In the present study, we have also determined the crystal structures of DHDPR enzymes from the plants Arabidopsis thaliana and S. moellendorffii , which are the first dimeric DHDPR structures. Analysis of these models demonstrates that the dimer forms through the intra-strand interface, and that unique secondary features in the plant enzymes block tetramer assembly. In addition, we have also solved the structure of tetrameric DHDPR from the pathogenic bacteria Neisseria meningitidis Measuring the activity of plant DHDPR enzymes showed that they are much more prone to substrate inhibition than the bacterial enzymes, which appears to be a consequence of increased flexibility of the substrate binding loop and higher affinity for the nucleotide substrate. This higher propensity to substrate inhibition may have consequences for ongoing efforts to increase lysine biosynthesis in plants.
Plant DHDPR forms a dimer with unique secondary structure features that preclude higher order assembly.,Watkin SAJ, Keown JR, Richards E, Goldstone DC, Devenish SRA, Pearce FG Biochem J. 2017 Nov 29. pii: BCJ20170709. doi: 10.1042/BCJ20170709. PMID:29187521[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Hudson AO, Bless C, Macedo P, Chatterjee SP, Singh BK, Gilvarg C, Leustek T. Biosynthesis of lysine in plants: evidence for a variant of the known bacterial pathways. Biochim Biophys Acta. 2005 Jan 18;1721(1-3):27-36. Epub 2004 Nov 4. PMID:15652176 doi:http://dx.doi.org/S0304-4165(04)00243-0
- ↑ Watkin SAJ, Keown JR, Richards E, Goldstone DC, Devenish SRA, Pearce FG. Plant DHDPR forms a dimer with unique secondary structure features that preclude higher order assembly. Biochem J. 2017 Nov 29. pii: BCJ20170709. doi: 10.1042/BCJ20170709. PMID:29187521 doi:http://dx.doi.org/10.1042/BCJ20170709
|