|
|
Line 3: |
Line 3: |
| <StructureSection load='5udg' size='340' side='right'caption='[[5udg]], [[Resolution|resolution]] 2.50Å' scene=''> | | <StructureSection load='5udg' size='340' side='right'caption='[[5udg]], [[Resolution|resolution]] 2.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5udg]] is a 5 chain structure with sequence from [http://en.wikipedia.org/wiki/"vibrio_subtilis"_ehrenberg_1835 "vibrio subtilis" ehrenberg 1835]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5UDG OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5UDG FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5udg]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5UDG OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5UDG FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4f8b|4f8b]], [[4fgc|4fgc]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">queF, A9D36_18900, AX282_02560, B4122_4589, B4417_3799, BN2127_JRS11_03356, BN2127_JRS2_02117, BN2127_JRS6_01198, BN2127_JRS9_01727, SC09_Contig19orf00807 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 "Vibrio subtilis" Ehrenberg 1835])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5udg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5udg OCA], [https://pdbe.org/5udg PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5udg RCSB], [https://www.ebi.ac.uk/pdbsum/5udg PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5udg ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Oxidoreductase Oxidoreductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.7.1.13 1.7.1.13] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5udg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5udg OCA], [http://pdbe.org/5udg PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5udg RCSB], [http://www.ebi.ac.uk/pdbsum/5udg PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5udg ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/A0A063X9I2_BACIU A0A063X9I2_BACIU]] Catalyzes the NADPH-dependent reduction of 7-cyano-7-deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine (preQ1).[HAMAP-Rule:MF_00818][SAAS:SAAS00534865] | + | [https://www.uniprot.org/uniprot/QUEF_BACSU QUEF_BACSU] Catalyzes the NADPH-dependent reduction of 7-cyano-7-deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine (preQ1), a late step in the queuosine pathway.<ref>PMID:15767583</ref> <ref>PMID:17929836</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 25: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Vibrio subtilis ehrenberg 1835]] | + | [[Category: Bacillus subtilis]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Oxidoreductase]]
| + | [[Category: Iwata-Reuyl D]] |
- | [[Category: Iwata-Reuyl, D]] | + | [[Category: Kiani MK]] |
- | [[Category: Kiani, M K]] | + | [[Category: Mohammad A]] |
- | [[Category: Mohammad, A]] | + | [[Category: Stec B]] |
- | [[Category: Stec, B]] | + | [[Category: Swairjo M]] |
- | [[Category: Swairjo, M]] | + | |
- | [[Category: Disulfide inactivation]]
| + | |
- | [[Category: Nadph-dependent reduction of the nitrile group]]
| + | |
- | [[Category: Trna modification pathway]]
| + | |
- | [[Category: Tunnel fold]]
| + | |
| Structural highlights
Function
QUEF_BACSU Catalyzes the NADPH-dependent reduction of 7-cyano-7-deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine (preQ1), a late step in the queuosine pathway.[1] [2]
Publication Abstract from PubMed
QueF enzymes catalyze the nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of the nitrile group of 7-cyano-7-deazaguanine (preQ(0)) to 7-aminomethyl-7-deazaguanine (preQ(1)) in the biosynthetic pathway to the tRNA modified nucleoside queuosine. The QueF-catalyzed reaction includes formation of a covalent thioimide intermediate with a conserved active site cysteine that is prone to oxidation in vivo. Here, we report the crystal structure of a mutant of Bacillus subtilis QueF, which reveals an unanticipated intramolecular disulfide formed between the catalytic Cys55 and a conserved Cys99 located near the active site. This structure is more symmetric than the substrate-bound structure and exhibits major rearrangement of the loops responsible for substrate binding. Mutation of Cys99 to Ala/Ser does not compromise enzyme activity, indicating that the disulfide does not play a catalytic role. Peroxide-induced inactivation of the wild-type enzyme is reversible with thioredoxin, while such inactivation of the Cys99Ala/Ser mutants is irreversible, consistent with protection of Cys55 from irreversible oxidation by disulfide formation with Cys99. Conservation of the cysteine pair, and the reported in vivo interaction of QueF with the thioredoxin-like hydroperoxide reductase AhpC in Escherichia coli suggest that regulation by the thioredoxin disulfide-thiol exchange system may constitute a general mechanism for protection of QueF from oxidative stress in vivo.
Protection of the Queuosine Biosynthesis Enzyme QueF from Irreversible Oxidation by a Conserved Intramolecular Disulfide.,Mohammad A, Bon Ramos A, Lee BW, Cohen SW, Kiani MK, Iwata-Reuyl D, Stec B, Swairjo MA Biomolecules. 2017 Mar 16;7(1). pii: E30. doi: 10.3390/biom7010030. PMID:28300774[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Van Lanen SG, Reader JS, Swairjo MA, de Crecy-Lagard V, Lee B, Iwata-Reuyl D. From cyclohydrolase to oxidoreductase: discovery of nitrile reductase activity in a common fold. Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4264-9. Epub 2005 Mar 14. PMID:15767583 doi:http://dx.doi.org/0408056102
- ↑ Lee BW, Van Lanen SG, Iwata-Reuyl D. Mechanistic studies of Bacillus subtilis QueF, the nitrile oxidoreductase involved in queuosine biosynthesis. Biochemistry. 2007 Nov 6;46(44):12844-54. Epub 2007 Oct 11. PMID:17929836 doi:http://dx.doi.org/10.1021/bi701265r
- ↑ Mohammad A, Bon Ramos A, Lee BW, Cohen SW, Kiani MK, Iwata-Reuyl D, Stec B, Swairjo MA. Protection of the Queuosine Biosynthesis Enzyme QueF from Irreversible Oxidation by a Conserved Intramolecular Disulfide. Biomolecules. 2017 Mar 16;7(1). pii: E30. doi: 10.3390/biom7010030. PMID:28300774 doi:http://dx.doi.org/10.3390/biom7010030
|