|
|
Line 3: |
Line 3: |
| <StructureSection load='5vxh' size='340' side='right'caption='[[5vxh]], [[Resolution|resolution]] 1.84Å' scene=''> | | <StructureSection load='5vxh' size='340' side='right'caption='[[5vxh]], [[Resolution|resolution]] 1.84Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5vxh]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Xancp Xancp]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5VXH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5VXH FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5vxh]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Xanthomonas_campestris_pv._campestris_str._ATCC_33913 Xanthomonas campestris pv. campestris str. ATCC 33913]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5VXH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5VXH FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.84Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5vxi|5vxi]], [[5vxd|5vxd]], [[5vxf|5vxf]], [[5vxe|5vxe]], [[5vxg|5vxg]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">fabH, XCC0212 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=190485 XANCP])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5vxh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5vxh OCA], [https://pdbe.org/5vxh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5vxh RCSB], [https://www.ebi.ac.uk/pdbsum/5vxh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5vxh ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Beta-ketoacyl-[acyl-carrier-protein]_synthase_I Beta-ketoacyl-[acyl-carrier-protein] synthase I], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.3.1.41 2.3.1.41] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5vxh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5vxh OCA], [http://pdbe.org/5vxh PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5vxh RCSB], [http://www.ebi.ac.uk/pdbsum/5vxh PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5vxh ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/OLEA_XANCP OLEA_XANCP] Involved in olefin biosynthesis (PubMed:21266575, PubMed:22524624, PubMed:27815501, PubMed:28223313). Catalyzes a non-decarboxylative head-to-head Claisen condensation of two acyl-CoA molecules, generating an (R)-2-alkyl-3-oxoalkanoate (PubMed:21266575, PubMed:22524624, PubMed:27815501). Is active with fatty acyl-CoA substrates that ranged from C(8) to C(16) in length, and is the most active with palmitoyl-CoA and myristoyl-CoA (PubMed:21266575).<ref>PMID:21266575</ref> <ref>PMID:22524624</ref> <ref>PMID:27815501</ref> <ref>PMID:28223313</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 19: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 5vxh" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 5vxh" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Acyl carrier protein synthase 3D structures|Acyl carrier protein synthase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 24: |
Line 27: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Xancp]] | + | [[Category: Xanthomonas campestris pv. campestris str. ATCC 33913]] |
- | [[Category: Jensen, M R]] | + | [[Category: Jensen MR]] |
- | [[Category: Wilmot, C M]] | + | [[Category: Wilmot CM]] |
- | [[Category: Condensation]]
| + | |
- | [[Category: Thiolase]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
OLEA_XANCP Involved in olefin biosynthesis (PubMed:21266575, PubMed:22524624, PubMed:27815501, PubMed:28223313). Catalyzes a non-decarboxylative head-to-head Claisen condensation of two acyl-CoA molecules, generating an (R)-2-alkyl-3-oxoalkanoate (PubMed:21266575, PubMed:22524624, PubMed:27815501). Is active with fatty acyl-CoA substrates that ranged from C(8) to C(16) in length, and is the most active with palmitoyl-CoA and myristoyl-CoA (PubMed:21266575).[1] [2] [3] [4]
Publication Abstract from PubMed
In the interest of decreasing dependence on fossil fuels, microbial hydrocarbon biosynthesis pathways are being studied for renewable, tailored production of specialty chemicals and biofuels. One candidate is long-chain olefin biosynthesis, a widespread bacterial pathway that produces waxy hydrocarbons. Found in three- and four-gene clusters, oleABCD encode the enzymes necessary to produce cis -olefins that differ by alkyl chain length, degree of unsaturation, and alkyl chain branching. The first enzyme in the pathway, OleA, catalyzes the Claisen condensation of two fatty acyl-coenzyme A molecules to form a beta-keto acid. In this report, the mechanistic role of Xanthomonas campestris OleA Glu117 is investigated through mutant enzymes. Crystal structures were determined for each mutant as well as their complex with the inhibitor cerulenin. Complemented by substrate modelling, these structures suggest that Glu117 aids in substrate positioning for productive carbon-carbon bond formation. Analysis of acyl-coenzyme A substrate hydrolysis shows diminished activity in all mutants. When the active site lacks an acidic residue in the 117 position, OleA cannot form condensed product, demonstrating Glu117 has a critical role upstream of the essential condensation reaction. Profiling of pH dependence shows that the apparent pKa for Glu117 is impacted by mutagenesis. Taken together, we propose that Glu117 is the general base needed to prime condensation via deprotonation of the second, non-covalently bound substrate during turnover. This is the first example of a member of the thiolase superfamily of condensing enzymes to contain an active site base originating from the second monomer of the dimer.
OleA Glu117 is key to condensation of two fatty-acyl coenzyme A substrates in long-chain olefin biosynthesis.,Jensen MR, Goblirsch BR, Christenson JK, Esler MA, Mohamed FA, Wackett LP, Wilmot CM Biochem J. 2017 Oct 12. pii: BCJ20170642. doi: 10.1042/BCJ20170642. PMID:29025976[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Frias JA, Richman JE, Erickson JS, Wackett LP. Purification and characterization of OleA from Xanthomonas campestris and demonstration of a non-decarboxylative Claisen condensation reaction. J Biol Chem. 2011 Apr 1;286(13):10930-8. doi: 10.1074/jbc.M110.216127. Epub 2011 , Jan 25. PMID:21266575 doi:http://dx.doi.org/10.1074/jbc.M110.216127
- ↑ Goblirsch BR, Frias JA, Wackett LP, Wilmot CM. Crystal Structures of Xanthomonas Campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids. Biochemistry. 2012 Apr 23. PMID:22524624 doi:10.1021/bi300386m
- ↑ Goblirsch BR, Jensen MR, Mohamed FA, Wackett LP, Wilmot CM. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis. J Biol Chem. 2016 Dec 23;291(52):26698-26706. doi: 10.1074/jbc.M116.760892. Epub , 2016 Nov 4. PMID:27815501 doi:http://dx.doi.org/10.1074/jbc.M116.760892
- ↑ Christenson JK, Jensen MR, Goblirsch BR, Mohamed F, Zhang W, Wilmot CM, Wackett LP. Active Multienzyme Assemblies for Long-Chain Olefinic Hydrocarbon Biosynthesis. J Bacteriol. 2017 Apr 11;199(9):e00890-16. doi: 10.1128/JB.00890-16. Print 2017 , May 1. PMID:28223313 doi:http://dx.doi.org/10.1128/JB.00890-16
- ↑ Jensen MR, Goblirsch BR, Christenson JK, Esler MA, Mohamed FA, Wackett LP, Wilmot CM. OleA Glu117 is key to condensation of two fatty-acyl coenzyme A substrates in long-chain olefin biosynthesis. Biochem J. 2017 Oct 12. pii: BCJ20170642. doi: 10.1042/BCJ20170642. PMID:29025976 doi:http://dx.doi.org/10.1042/BCJ20170642
|