|
|
Line 3: |
Line 3: |
| <StructureSection load='6bvg' size='340' side='right'caption='[[6bvg]], [[Resolution|resolution]] 3.20Å' scene=''> | | <StructureSection load='6bvg' size='340' side='right'caption='[[6bvg]], [[Resolution|resolution]] 3.20Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6bvg]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Baccz Baccz]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6BVG OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6BVG FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6bvg]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_cereus_E33L Bacillus cereus E33L]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6BVG OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6BVG FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HG:MERCURY+(II)+ION'>HG</scene>, <scene name='pdbligand=MAL:MALTOSE'>MAL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.2Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ptsG, BCE33L0344 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=288681 BACCZ])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene>, <scene name='pdbligand=HG:MERCURY+(II)+ION'>HG</scene>, <scene name='pdbligand=PRD_900001:alpha-maltose'>PRD_900001</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Protein-N(pi)-phosphohistidine--sugar_phosphotransferase Protein-N(pi)-phosphohistidine--sugar phosphotransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.69 2.7.1.69] </span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6bvg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6bvg OCA], [https://pdbe.org/6bvg PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6bvg RCSB], [https://www.ebi.ac.uk/pdbsum/6bvg PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6bvg ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6bvg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6bvg OCA], [http://pdbe.org/6bvg PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6bvg RCSB], [http://www.ebi.ac.uk/pdbsum/6bvg PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6bvg ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/Q63GK8_BACCZ Q63GK8_BACCZ]] The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane.[SAAS:SAAS00547063] | + | [https://www.uniprot.org/uniprot/Q63GK8_BACCZ Q63GK8_BACCZ] The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane.[SAAS:SAAS00547063] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 24: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Baccz]] | + | [[Category: Bacillus cereus E33L]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Ren, Z]] | + | [[Category: Ren Z]] |
- | [[Category: Zhou, M]] | + | [[Category: Zhou M]] |
- | [[Category: Eiic maltose transporter]]
| + | |
- | [[Category: Transport protein]]
| + | |
| Structural highlights
Function
Q63GK8_BACCZ The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active -transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane.[SAAS:SAAS00547063]
Publication Abstract from PubMed
The phosphoenolpyruvate-dependent phosphotransferase system (PTS) transports sugar into bacteria and phosphorylates the sugar for metabolic consumption. The PTS is important for the survival of bacteria and thus a potential target for antibiotics, but its mechanism of sugar uptake and phosphorylation remains unclear. The PTS is composed of multiple proteins, and the membrane-embedded Enzyme IIC (EIIC) component transports sugars across the membrane. Crystal structures of two members of the glucose superfamily of EIICs, bcChbC and bcMalT, were solved in the inward-facing and outward-facing conformations, and the structures suggest that sugar translocation could be achieved by movement of a structured domain that contains the sugar-binding site. However, different conformations have not been captured on the same transporter to allow precise description of the conformational changes. Here we present a crystal structure of bcMalT trapped in an inward-facing conformation by a mercury ion that bridges two strategically placed cysteine residues. The structure allows direct comparison of the outward- and inward-facing conformations and reveals a large rigid-body motion of the sugar-binding domain and other conformational changes that accompany the rigid-body motion. All-atom molecular dynamics simulations show that the inward-facing structure is stable with or without the cross-linking. The conformational changes were further validated by single-molecule Foster resonance energy transfer (smFRET). Combined, these results establish the elevator-type mechanism of transport in the glucose superfamily of EIIC transporters.
Structure of an EIIC sugar transporter trapped in an inward-facing conformation.,Ren Z, Lee J, Moosa MM, Nian Y, Hu L, Xu Z, McCoy JG, Ferreon ACM, Im W, Zhou M Proc Natl Acad Sci U S A. 2018 May 21. pii: 1800647115. doi:, 10.1073/pnas.1800647115. PMID:29784777[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Ren Z, Lee J, Moosa MM, Nian Y, Hu L, Xu Z, McCoy JG, Ferreon ACM, Im W, Zhou M. Structure of an EIIC sugar transporter trapped in an inward-facing conformation. Proc Natl Acad Sci U S A. 2018 May 21. pii: 1800647115. doi:, 10.1073/pnas.1800647115. PMID:29784777 doi:http://dx.doi.org/10.1073/pnas.1800647115
|