|
|
| Line 3: |
Line 3: |
| | <StructureSection load='6d25' size='340' side='right'caption='[[6d25]], [[Resolution|resolution]] 1.91Å' scene=''> | | <StructureSection load='6d25' size='340' side='right'caption='[[6d25]], [[Resolution|resolution]] 1.91Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[6d25]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Xanac Xanac]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6D25 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6D25 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6d25]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Xanthomonas_citri_pv._citri_str._306 Xanthomonas citri pv. citri str. 306]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6D25 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6D25 FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.91Å</td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">XAC1286 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=190486 XANAC])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6d25 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6d25 OCA], [http://pdbe.org/6d25 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6d25 RCSB], [http://www.ebi.ac.uk/pdbsum/6d25 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6d25 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6d25 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6d25 OCA], [https://pdbe.org/6d25 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6d25 RCSB], [https://www.ebi.ac.uk/pdbsum/6d25 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6d25 ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/Q8PMY9_XANAC Q8PMY9_XANAC] |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 22: |
Line 24: |
| | </StructureSection> | | </StructureSection> |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Xanac]] | + | [[Category: Xanthomonas citri pv. citri str. 306]] |
| - | [[Category: Giuseppe, P O]] | + | [[Category: Giuseppe PO]] |
| - | [[Category: Morais, M A.B]] | + | [[Category: Morais MAB]] |
| - | [[Category: Murakami, M T]] | + | [[Category: Murakami MT]] |
| - | [[Category: Santos, C R]] | + | [[Category: Santos CR]] |
| - | [[Category: Tonoli, C C.C]] | + | [[Category: Tonoli CCC]] |
| - | [[Category: Arabinofuranosidase]]
| + | |
| - | [[Category: Di-substitution recognition]]
| + | |
| - | [[Category: Enzyme]]
| + | |
| - | [[Category: Gh51]]
| + | |
| - | [[Category: Hydrolase]]
| + | |
| - | [[Category: Trimer]]
| + | |
| Structural highlights
Function
Q8PMY9_XANAC
Publication Abstract from PubMed
Background: Arabinoxylan is an abundant polysaccharide in industrially relevant biomasses such as sugarcane, corn stover and grasses. However, the arabinofuranosyl di-substitutions that decorate the xylan backbone are recalcitrant to most known arabinofuranosidases (Abfs). Results: In this work, we identified a novel GH51 Abf (XacAbf51) that forms trimers in solution and can cope efficiently with both mono- and di-substitutions at terminal or internal xylopyranosyl units of arabinoxylan. Using mass spectrometry, the kinetic parameters of the hydrolysis of 3(3)-alpha-l-arabinofuranosyl-xylotetraose and 2(3),3(3)-di-alpha-l-arabinofuranosyl-xylotetraose by XacAbf51 were determined, demonstrating the capacity of this enzyme to cleave arabinofuranosyl linkages of internal mono- and di-substituted xylopyranosyl units. Complementation studies of fungal enzyme cocktails with XacAbf51 revealed an increase of up to 20% in the release of reducing sugars from pretreated sugarcane bagasse, showing the biotechnological potential of a generalist GH51 in biomass saccharification. To elucidate the structural basis for the recognition of internal di-substitutions, the crystal structure of XacAbf51 was determined unveiling the existence of a pocket strategically arranged near to the - 1 subsite that can accommodate a second arabinofuranosyl decoration, a feature not described for any other GH51 Abf structurally characterized so far. Conclusions: In summary, this study reports the first kinetic characterization of internal di-substitution release by a GH51 Abf, provides the structural basis for this activity and reveals a promising candidate for industrial processes involving plant cell wall depolymerization.
The mechanism by which a distinguishing arabinofuranosidase can cope with internal di-substitutions in arabinoxylans.,Dos Santos CR, de Giuseppe PO, de Souza FHM, Zanphorlin LM, Domingues MN, Pirolla RAS, Honorato RV, Tonoli CCC, de Morais MAB, de Matos Martins VP, Fonseca LM, Buchli F, de Oliveira PSL, Gozzo FC, Murakami MT Biotechnol Biofuels. 2018 Aug 11;11:223. doi: 10.1186/s13068-018-1212-y., eCollection 2018. PMID:30127853[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Dos Santos CR, de Giuseppe PO, de Souza FHM, Zanphorlin LM, Domingues MN, Pirolla RAS, Honorato RV, Tonoli CCC, de Morais MAB, de Matos Martins VP, Fonseca LM, Buchli F, de Oliveira PSL, Gozzo FC, Murakami MT. The mechanism by which a distinguishing arabinofuranosidase can cope with internal di-substitutions in arabinoxylans. Biotechnol Biofuels. 2018 Aug 11;11:223. doi: 10.1186/s13068-018-1212-y., eCollection 2018. PMID:30127853 doi:http://dx.doi.org/10.1186/s13068-018-1212-y
|