|
|
Line 3: |
Line 3: |
| <StructureSection load='3aq4' size='340' side='right'caption='[[3aq4]], [[Resolution|resolution]] 1.80Å' scene=''> | | <StructureSection load='3aq4' size='340' side='right'caption='[[3aq4]], [[Resolution|resolution]] 1.80Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3aq4]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Arath Arath]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3AQ4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3AQ4 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3aq4]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Arabidopsis_thaliana Arabidopsis thaliana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3AQ4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3AQ4 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3aq2|3aq2]], [[3aq3|3aq3]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ARF1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=3702 ARATH])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3aq4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3aq4 OCA], [https://pdbe.org/3aq4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3aq4 RCSB], [https://www.ebi.ac.uk/pdbsum/3aq4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3aq4 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3aq4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3aq4 OCA], [https://pdbe.org/3aq4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3aq4 RCSB], [https://www.ebi.ac.uk/pdbsum/3aq4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3aq4 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/ARF1_ARATH ARF1_ARATH]] GTP-binding protein involved in protein trafficking; required for the sequence-specific vacuolar sorting route to the lytic vacuole, for the ER-to-Golgi transport and for the Golgi-derived transport to the plasma membrane. Involved in the recruitment of COPI and GDAP1 to membranes.<ref>PMID:12177464</ref> <ref>PMID:12182707</ref> <ref>PMID:12724547</ref> <ref>PMID:15659621</ref> <ref>PMID:17307898</ref>
| + | [https://www.uniprot.org/uniprot/ARF1_ARATH ARF1_ARATH] GTP-binding protein involved in protein trafficking; required for the sequence-specific vacuolar sorting route to the lytic vacuole, for the ER-to-Golgi transport and for the Golgi-derived transport to the plasma membrane. Involved in the recruitment of COPI and GDAP1 to membranes.<ref>PMID:12177464</ref> <ref>PMID:12182707</ref> <ref>PMID:12724547</ref> <ref>PMID:15659621</ref> <ref>PMID:17307898</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 24: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Arath]] | + | [[Category: Arabidopsis thaliana]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Wang, M M]] | + | [[Category: Wang MM]] |
- | [[Category: Yuan, Y A]] | + | [[Category: Yuan YA]] |
- | [[Category: Adp-ribosylation]]
| + | |
- | [[Category: Adp-ribosylation factor]]
| + | |
- | [[Category: Mirna processing machinery]]
| + | |
- | [[Category: Toxin]]
| + | |
| Structural highlights
Function
ARF1_ARATH GTP-binding protein involved in protein trafficking; required for the sequence-specific vacuolar sorting route to the lytic vacuole, for the ER-to-Golgi transport and for the Golgi-derived transport to the plasma membrane. Involved in the recruitment of COPI and GDAP1 to membranes.[1] [2] [3] [4] [5]
Publication Abstract from PubMed
The Agrobacterium Ti plasmid (T-DNA) 6b proteins interact with many different host proteins implicated in plant cell proliferation. Here, we show that Arabidopsis plants overexpressing 6b display microRNA (miRNA) deficiency by directly targeting SERRATE and AGO1 via a specific loop fragment (residues 40-55). In addition, we report the crystal structures of Agrobacterium tumefaciens AK6b at 2.1 A, Agrobacterium vitis AB6b at 1.65 A, and Arabidopsis ADP ribosylation factor (ARF) at 1.8 A. The 6b structure adopts an ADP-ribosylating toxin fold closely related to cholera toxin. In vitro ADP ribosylation analysis demonstrates that 6b represents a new toxin family, with Tyr 66, Thr 93, and Tyr 153 as the ADP ribosylation catalytic residues in the presence of Arabidopsis ARF and GTP. Our work provides molecular insights, suggesting that 6b regulates plant cell growth by the disturbance of the miRNA pathway through its ADP ribosylation activity.
Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b.,Wang M, Soyano T, Machida S, Yang JY, Jung C, Chua NH, Yuan YA Genes Dev. 2011 Jan 1;25(1):64-76. Epub 2010 Dec 14. PMID:21156810[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Lee MH, Min MK, Lee YJ, Jin JB, Shin DH, Kim DH, Lee KH, Hwang I. ADP-ribosylation factor 1 of Arabidopsis plays a critical role in intracellular trafficking and maintenance of endoplasmic reticulum morphology in Arabidopsis. Plant Physiol. 2002 Aug;129(4):1507-20. PMID:12177464 doi:http://dx.doi.org/10.1104/pp.003624
- ↑ Takeuchi M, Ueda T, Yahara N, Nakano A. Arf1 GTPase plays roles in the protein traffic between the endoplasmic reticulum and the Golgi apparatus in tobacco and Arabidopsis cultured cells. Plant J. 2002 Aug;31(4):499-515. PMID:12182707
- ↑ Pimpl P, Hanton SL, Taylor JP, Pinto-daSilva LL, Denecke J. The GTPase ARF1p controls the sequence-specific vacuolar sorting route to the lytic vacuole. Plant Cell. 2003 May;15(5):1242-56. PMID:12724547
- ↑ Xu J, Scheres B. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell. 2005 Feb;17(2):525-36. Epub 2005 Jan 19. PMID:15659621 doi:http://dx.doi.org/10.1105/tpc.104.028449
- ↑ Matheson LA, Hanton SL, Rossi M, Latijnhouwers M, Stefano G, Renna L, Brandizzi F. Multiple roles of ADP-ribosylation factor 1 in plant cells include spatially regulated recruitment of coatomer and elements of the Golgi matrix. Plant Physiol. 2007 Apr;143(4):1615-27. Epub 2007 Feb 16. PMID:17307898 doi:http://dx.doi.org/10.1104/pp.106.094953
- ↑ Wang M, Soyano T, Machida S, Yang JY, Jung C, Chua NH, Yuan YA. Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b. Genes Dev. 2011 Jan 1;25(1):64-76. Epub 2010 Dec 14. PMID:21156810 doi:10.1101/gad.1985511
|