|
|
Line 3: |
Line 3: |
| <StructureSection load='6dqx' size='340' side='right'caption='[[6dqx]], [[Resolution|resolution]] 1.76Å' scene=''> | | <StructureSection load='6dqx' size='340' side='right'caption='[[6dqx]], [[Resolution|resolution]] 1.76Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6dqx]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Actinobacillus_ureae_atcc_25976 Actinobacillus ureae atcc 25976]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DQX OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6DQX FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6dqx]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Actinobacillus_ureae_ATCC_25976 Actinobacillus ureae ATCC 25976]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DQX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6DQX FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.76Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HMPREF0027_1834 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=887324 Actinobacillus ureae ATCC 25976])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Ribonucleoside-diphosphate_reductase Ribonucleoside-diphosphate reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.17.4.1 1.17.4.1] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6dqx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6dqx OCA], [https://pdbe.org/6dqx PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6dqx RCSB], [https://www.ebi.ac.uk/pdbsum/6dqx PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6dqx ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6dqx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6dqx OCA], [http://pdbe.org/6dqx PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6dqx RCSB], [http://www.ebi.ac.uk/pdbsum/6dqx PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6dqx ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/E8KJ17_9PAST E8KJ17_9PAST] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 18: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 6dqx" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6dqx" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Ribonucleotide reductase 3D structures|Ribonucleotide reductase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Actinobacillus ureae atcc 25976]] | + | [[Category: Actinobacillus ureae ATCC 25976]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Ribonucleoside-diphosphate reductase]]
| + | [[Category: Boal AK]] |
- | [[Category: Boal, A K]] | + | [[Category: McBride MJ]] |
- | [[Category: McBride, M J]] | + | [[Category: Palowitch GM]] |
- | [[Category: Palowitch, G M]] | + | |
- | [[Category: Alpha subunit]]
| + | |
- | [[Category: Class id]]
| + | |
- | [[Category: Nucleotide metabolism]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
- | [[Category: Ribonucleotide reductase]]
| + | |
| Structural highlights
Function
E8KJ17_9PAST
Publication Abstract from PubMed
Class I ribonucleotide reductases (RNRs) share a common mechanism of nucleotide reduction in a catalytic alpha subunit. All RNRs initiate catalysis with a thiyl radical, generated in class I enzymes by a metallocofactor in a separate beta subunit. Class Id RNRs use a simple mechanism of cofactor activation involving oxidation of a Mn(II)2 cluster by free superoxide to yield a metal-based Mn(III)Mn(IV) oxidant. This simple cofactor assembly pathway suggests that class Id RNRs may be representative of the evolutionary precursors to more complex class Ia-c enzymes. X-ray crystal structures of two class Id alpha proteins from Flavobacterium johnsoniae ( Fj) and Actinobacillus ureae ( Au) reveal that this subunit is distinctly small. The enzyme completely lacks common N-terminal ATP-cone allosteric motifs that regulate overall activity, a process that normally occurs by dATP-induced formation of inhibitory quaternary structures to prevent productive beta subunit association. Class Id RNR activity is insensitive to dATP in the Fj and Au enzymes evaluated here, as expected. However, the class Id alpha protein from Fj adopts higher-order structures, detected crystallographically and in solution. The Au enzyme does not exhibit these quaternary forms. Our study reveals structural similarity between bacterial class Id and eukaryotic class Ia alpha subunits in conservation of an internal auxiliary domain. Our findings with the Fj enzyme illustrate that nucleotide-independent higher-order quaternary structures can form in simple RNRs with truncated or missing allosteric motifs.
Structures of Class Id Ribonucleotide Reductase Catalytic Subunits Reveal a Minimal Architecture for Deoxynucleotide Biosynthesis.,Rose HR, Maggiolo AO, McBride MJ, Palowitch GM, Pandelia ME, Davis KM, Yennawar NH, Boal AK Biochemistry. 2019 Apr 9;58(14):1845-1860. doi: 10.1021/acs.biochem.8b01252. Epub, 2019 Mar 22. PMID:30855138[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Rose HR, Maggiolo AO, McBride MJ, Palowitch GM, Pandelia ME, Davis KM, Yennawar NH, Boal AK. Structures of Class Id Ribonucleotide Reductase Catalytic Subunits Reveal a Minimal Architecture for Deoxynucleotide Biosynthesis. Biochemistry. 2019 Apr 9;58(14):1845-1860. doi: 10.1021/acs.biochem.8b01252. Epub, 2019 Mar 22. PMID:30855138 doi:http://dx.doi.org/10.1021/acs.biochem.8b01252
|