|
|
Line 3: |
Line 3: |
| <StructureSection load='6ec6' size='340' side='right'caption='[[6ec6]], [[Resolution|resolution]] 2.85Å' scene=''> | | <StructureSection load='6ec6' size='340' side='right'caption='[[6ec6]], [[Resolution|resolution]] 2.85Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6ec6]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_29149 Atcc 29149]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6EC6 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6EC6 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6ec6]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Ruminococcus_gnavus Ruminococcus gnavus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6EC6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6EC6 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.85Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CDL23_04530, CDL24_00315 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=33038 ATCC 29149])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6ec6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ec6 OCA], [http://pdbe.org/6ec6 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6ec6 RCSB], [http://www.ebi.ac.uk/pdbsum/6ec6 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6ec6 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6ec6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ec6 OCA], [https://pdbe.org/6ec6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6ec6 RCSB], [https://www.ebi.ac.uk/pdbsum/6ec6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6ec6 ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/A0A2N5PVZ8_RUMGN A0A2N5PVZ8_RUMGN] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 19: |
Line 21: |
| | | |
| ==See Also== | | ==See Also== |
| + | *[[Galactosidase 3D structures|Galactosidase 3D structures]] |
| *[[Glucuronisidase 3D structures|Glucuronisidase 3D structures]] | | *[[Glucuronisidase 3D structures|Glucuronisidase 3D structures]] |
| == References == | | == References == |
Line 24: |
Line 27: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 29149]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Biernat, K A]] | + | [[Category: Biernat KA]] |
- | [[Category: Redinbo, M R]] | + | [[Category: Redinbo MR]] |
- | [[Category: Glycosyl hydrolase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
| Structural highlights
Function
A0A2N5PVZ8_RUMGN
Publication Abstract from PubMed
Bacterial beta-glucuronidase (GUS) enzymes cause drug toxicity by reversing Phase II glucuronidation in the gastrointestinal tract. While many human gut microbial GUS enzymes have been examined with model glucuronide substrates like p-nitrophenol-beta-D-glucuronide (pNPG), the GUS orthologs that are most efficient at processing drug-glucuronides remain unclear. Here we present the crystal structures of GUS enzymes from human gut commensals Lactobacillus rhamnosus, Ruminococcus gnavus, and Faecalibacterium prausnitzii that possess an active site loop (Loop 1; L1) analogous to that found in E. coli GUS, which processes drug substrates. We also resolve the structure of the No Loop GUS from Bacteroides dorei. We then compare the pNPG and diclofenac glucuronide processing abilities of a panel of twelve structurally diverse GUS proteins, and find that the new L1 GUS enzymes presented here process small glucuronide substrates inefficiently compared to previously characterized L1 GUS enzymes like E. coli GUS. We further demonstrate that our GUS inhibitors, which are effective against some L1 enzymes, are not potent towards all. Our findings pinpoint active site structural features necessary for the processing of drug-glucuronide substrates and the inhibition of such processing.
Structure, function, and inhibition of drug reactivating human gut microbial beta-glucuronidases.,Biernat KA, Pellock SJ, Bhatt AP, Bivins MM, Walton WG, Tran BNT, Wei L, Snider MC, Cesmat AP, Tripathy A, Erie DA, Redinbo MR Sci Rep. 2019 Jan 29;9(1):825. doi: 10.1038/s41598-018-36069-w. PMID:30696850[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Biernat KA, Pellock SJ, Bhatt AP, Bivins MM, Walton WG, Tran BNT, Wei L, Snider MC, Cesmat AP, Tripathy A, Erie DA, Redinbo MR. Structure, function, and inhibition of drug reactivating human gut microbial beta-glucuronidases. Sci Rep. 2019 Jan 29;9(1):825. doi: 10.1038/s41598-018-36069-w. PMID:30696850 doi:http://dx.doi.org/10.1038/s41598-018-36069-w
|