|
|
Line 3: |
Line 3: |
| <StructureSection load='6muj' size='340' side='right'caption='[[6muj]], [[Resolution|resolution]] 2.25Å' scene=''> | | <StructureSection load='6muj' size='340' side='right'caption='[[6muj]], [[Resolution|resolution]] 2.25Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6muj]] is a 5 chain structure with sequence from [http://en.wikipedia.org/wiki/Strco Strco]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6MUJ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6MUJ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6muj]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Streptomyces_coelicolor_A3(2) Streptomyces coelicolor A3(2)]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6MUJ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6MUJ FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=DTT:2,3-DIHYDROXY-1,4-DITHIOBUTANE'>DTT</scene>, <scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=GLY:GLYCINE'>GLY</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=IMD:IMIDAZOLE'>IMD</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.249Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SCO7548 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=100226 STRCO])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=DTT:2,3-DIHYDROXY-1,4-DITHIOBUTANE'>DTT</scene>, <scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=GLY:GLYCINE'>GLY</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=IMD:IMIDAZOLE'>IMD</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Formylglycine-generating_enzyme Formylglycine-generating enzyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.8.3.7 1.8.3.7] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6muj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6muj OCA], [https://pdbe.org/6muj PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6muj RCSB], [https://www.ebi.ac.uk/pdbsum/6muj PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6muj ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6muj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6muj OCA], [http://pdbe.org/6muj PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6muj RCSB], [http://www.ebi.ac.uk/pdbsum/6muj PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6muj ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/FGE_STRCO FGE_STRCO]] Oxidase that catalyzes the conversion of cysteine to 3-oxoalanine on target proteins. 3-oxoalanine modification, which is also named formylglycine (fGly), occurs in the maturation of arylsulfatases and some alkaline phosphatases that use the hydrated form of 3-oxoalanine as a catalytic nucleophile.<ref>PMID:18390551</ref> <ref>PMID:25931126</ref> | + | [https://www.uniprot.org/uniprot/FGE_STRCO FGE_STRCO] Oxidase that catalyzes the conversion of cysteine to 3-oxoalanine on target proteins. 3-oxoalanine modification, which is also named formylglycine (fGly), occurs in the maturation of arylsulfatases and some alkaline phosphatases that use the hydrated form of 3-oxoalanine as a catalytic nucleophile.<ref>PMID:18390551</ref> <ref>PMID:25931126</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 24: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Formylglycine-generating enzyme]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Strco]]
| + | [[Category: Appel MJ]] |
- | [[Category: Appel, M J]] | + | [[Category: Bertozzi C]] |
- | [[Category: Bertozzi, C]] | + | [[Category: Lafrance-Vanasse J]] |
- | [[Category: Lafrance-Vanasse, J]] | + | [[Category: Tainer JA]] |
- | [[Category: Tainer, J A]] | + | [[Category: Tsai C-L]] |
- | [[Category: Tsai, C L]] | + | |
- | [[Category: Copper oxidase]]
| + | |
- | [[Category: Formylglycine]]
| + | |
- | [[Category: Metal binding protein]]
| + | |
- | [[Category: Metalloenzyme]]
| + | |
| Structural highlights
6muj is a 5 chain structure with sequence from Streptomyces coelicolor A3(2). Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 2.249Å |
Ligands: | , , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
FGE_STRCO Oxidase that catalyzes the conversion of cysteine to 3-oxoalanine on target proteins. 3-oxoalanine modification, which is also named formylglycine (fGly), occurs in the maturation of arylsulfatases and some alkaline phosphatases that use the hydrated form of 3-oxoalanine as a catalytic nucleophile.[1] [2]
Publication Abstract from PubMed
The formylglycine-generating enzyme (FGE) is required for the posttranslational activation of type I sulfatases by oxidation of an active-site cysteine to Calpha-formylglycine. FGE has emerged as an enabling biotechnology tool due to the robust utility of the aldehyde product as a bioconjugation handle in recombinant proteins. Here, we show that Cu(I)-FGE is functional in O2 activation and reveal a high-resolution X-ray crystal structure of FGE in complex with its catalytic copper cofactor. We establish that the copper atom is coordinated by two active-site cysteine residues in a nearly linear geometry, supporting and extending prior biochemical and structural data. The active cuprous FGE complex was interrogated directly by X-ray absorption spectroscopy. These data unambiguously establish the configuration of the resting enzyme metal center and, importantly, reveal the formation of a three-coordinate tris(thiolate) trigonal planar complex upon substrate binding as furthermore supported by density functional theory (DFT) calculations. Critically, inner-sphere substrate coordination turns on O2 activation at the copper center. These collective results provide a detailed mechanistic framework for understanding why nature chose this structurally unique monocopper active site to catalyze oxidase chemistry for sulfatase activation.
Formylglycine-generating enzyme binds substrate directly at a mononuclear Cu(I) center to initiate O2 activation.,Appel MJ, Meier KK, Lafrance-Vanasse J, Lim H, Tsai CL, Hedman B, Hodgson KO, Tainer JA, Solomon EI, Bertozzi CR Proc Natl Acad Sci U S A. 2019 Mar 1. pii: 1818274116. doi:, 10.1073/pnas.1818274116. PMID:30824597[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Carlson BL, Ballister ER, Skordalakes E, King DS, Breidenbach MA, Gilmore SA, Berger JM, Bertozzi CR. Function and structure of a prokaryotic formylglycine-generating enzyme. J Biol Chem. 2008 Jul 18;283(29):20117-25. Epub 2008 Apr 4. PMID:18390551 doi:10.1074/jbc.M800217200
- ↑ Holder PG, Jones LC, Drake PM, Barfield RM, Banas S, de Hart GW, Baker J, Rabuka D. Reconstitution of Formylglycine-generating Enzyme with Copper(II) for Aldehyde Tag Conversion. J Biol Chem. 2015 Jun 19;290(25):15730-45. doi: 10.1074/jbc.M115.652669. Epub, 2015 Apr 30. PMID:25931126 doi:http://dx.doi.org/10.1074/jbc.M115.652669
- ↑ Appel MJ, Meier KK, Lafrance-Vanasse J, Lim H, Tsai CL, Hedman B, Hodgson KO, Tainer JA, Solomon EI, Bertozzi CR. Formylglycine-generating enzyme binds substrate directly at a mononuclear Cu(I) center to initiate O2 activation. Proc Natl Acad Sci U S A. 2019 Mar 1. pii: 1818274116. doi:, 10.1073/pnas.1818274116. PMID:30824597 doi:http://dx.doi.org/10.1073/pnas.1818274116
|