|
|
Line 3: |
Line 3: |
| <StructureSection load='6n00' size='340' side='right'caption='[[6n00]], [[Resolution|resolution]] 1.90Å' scene=''> | | <StructureSection load='6n00' size='340' side='right'caption='[[6n00]], [[Resolution|resolution]] 1.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6n00]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Rhopa Rhopa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6N00 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6N00 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6n00]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Rhodopseudomonas_palustris_CGA009 Rhodopseudomonas palustris CGA009]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6N00 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6N00 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6mzz|6mzz]], [[6muy|6muy]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">RPA1163 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=258594 RHOPA])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6n00 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6n00 OCA], [https://pdbe.org/6n00 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6n00 RCSB], [https://www.ebi.ac.uk/pdbsum/6n00 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6n00 ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Haloacetate_dehalogenase Haloacetate dehalogenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.8.1.3 3.8.1.3] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6n00 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6n00 OCA], [http://pdbe.org/6n00 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6n00 RCSB], [http://www.ebi.ac.uk/pdbsum/6n00 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6n00 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/DEHA_RHOPA DEHA_RHOPA]] Catalyzes the hydrolytic defluorination of fluoroacetate to produce glycolate. Has lower activity towards bromoacetate and chloroacetate.<ref>PMID:21510690</ref> <ref>PMID:21510690</ref> | + | [https://www.uniprot.org/uniprot/DEHA_RHOPA DEHA_RHOPA] Catalyzes the hydrolytic defluorination of fluoroacetate to produce glycolate. Has lower activity towards bromoacetate and chloroacetate.<ref>PMID:21510690</ref> <ref>PMID:21510690</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 28: |
Line 26: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Haloacetate dehalogenase]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Rhopa]] | + | [[Category: Rhodopseudomonas palustris CGA009]] |
- | [[Category: Besaw, J]] | + | [[Category: Besaw J]] |
- | [[Category: Finke, A D]] | + | [[Category: Finke AD]] |
- | [[Category: Gruner, S M]] | + | [[Category: Gruner SM]] |
- | [[Category: Mehrabi, P]] | + | [[Category: Mehrabi P]] |
- | [[Category: Miller, R J.D]] | + | [[Category: Miller RJD]] |
- | [[Category: Pare-Labrosse, O]] | + | [[Category: Pare-Labrosse O]] |
- | [[Category: Sarrachini, A]] | + | [[Category: Sarrachini A]] |
- | [[Category: Wierman, J L]] | + | [[Category: Wierman JL]] |
- | [[Category: Defluorinase]]
| + | |
- | [[Category: Dehalogenase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
| Structural highlights
Function
DEHA_RHOPA Catalyzes the hydrolytic defluorination of fluoroacetate to produce glycolate. Has lower activity towards bromoacetate and chloroacetate.[1] [2]
Publication Abstract from PubMed
A fixed-target approach to high-throughput room-temperature serial synchrotron crystallography with oscillation is described. Patterned silicon chips with microwells provide high crystal-loading density with an extremely high hit rate. The microfocus, undulator-fed beamline at CHESS, which has compound refractive optics and a fast-framing detector, was built and optimized for this experiment. The high-throughput oscillation method described here collects 1-5 degrees of data per crystal at room temperature with fast (10 degrees s(-1)) oscillation rates and translation times, giving a crystal-data collection rate of 2.5 Hz. Partial datasets collected by the oscillation method at a storage-ring source provide more complete data per crystal than still images, dramatically lowering the total number of crystals needed for a complete dataset suitable for structure solution and refinement - up to two orders of magnitude fewer being required. Thus, this method is particularly well suited to instances where crystal quantities are low. It is demonstrated, through comparison of first and last oscillation images of two systems, that dose and the effects of radiation damage can be minimized through fast rotation and low angular sweeps for each crystal.
Fixed-target serial oscillation crystallography at room temperature.,Wierman JL, Pare-Labrosse O, Sarracini A, Besaw JE, Cook MJ, Oghbaey S, Daoud H, Mehrabi P, Kriksunov I, Kuo A, Schuller DJ, Smith S, Ernst OP, Szebenyi DME, Gruner SM, Miller RJD, Finke AD IUCrJ. 2019 Feb 23;6(Pt 2):305-316. doi: 10.1107/S2052252519001453. eCollection, 2019 Mar 1. PMID:30867928[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Chan PW, Yakunin AF, Edwards EA, Pai EF. Mapping the Reaction Coordinates of Enzymatic Defluorination. J Am Chem Soc. 2011 Apr 21. PMID:21510690 doi:10.1021/ja200277d
- ↑ Chan PW, Yakunin AF, Edwards EA, Pai EF. Mapping the Reaction Coordinates of Enzymatic Defluorination. J Am Chem Soc. 2011 Apr 21. PMID:21510690 doi:10.1021/ja200277d
- ↑ Wierman JL, Pare-Labrosse O, Sarracini A, Besaw JE, Cook MJ, Oghbaey S, Daoud H, Mehrabi P, Kriksunov I, Kuo A, Schuller DJ, Smith S, Ernst OP, Szebenyi DME, Gruner SM, Miller RJD, Finke AD. Fixed-target serial oscillation crystallography at room temperature. IUCrJ. 2019 Feb 23;6(Pt 2):305-316. doi: 10.1107/S2052252519001453. eCollection, 2019 Mar 1. PMID:30867928 doi:http://dx.doi.org/10.1107/S2052252519001453
|