|
|
| Line 3: |
Line 3: |
| | <StructureSection load='6np1' size='340' side='right'caption='[[6np1]], [[Resolution|resolution]] 1.60Å' scene=''> | | <StructureSection load='6np1' size='340' side='right'caption='[[6np1]], [[Resolution|resolution]] 1.60Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[6np1]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"aerobacter_cloacae"_(jordan_1890)_bergey_et_al._1923 "aerobacter cloacae" (jordan 1890) bergey et al. 1923]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6NP1 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6NP1 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6np1]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Enterobacter_cloacae Enterobacter cloacae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6NP1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6NP1 FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">aac 3-VI ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=550 "Aerobacter cloacae" (Jordan 1890) Bergey et al. 1923])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Aminoglycoside_N(3')-acetyltransferase Aminoglycoside N(3')-acetyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.3.1.81 2.3.1.81] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6np1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6np1 OCA], [https://pdbe.org/6np1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6np1 RCSB], [https://www.ebi.ac.uk/pdbsum/6np1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6np1 ProSAT]</span></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6np1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6np1 OCA], [http://pdbe.org/6np1 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6np1 RCSB], [http://www.ebi.ac.uk/pdbsum/6np1 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6np1 ProSAT]</span></td></tr> | + | |
| | </table> | | </table> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/Q47030_ENTCL Q47030_ENTCL] |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 22: |
Line 23: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| | + | [[Category: Enterobacter cloacae]] |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Cuneo, M J]] | + | [[Category: Cuneo MJ]] |
| - | [[Category: Kumar, P]] | + | [[Category: Kumar P]] |
| - | [[Category: Antibiotic]]
| + | |
| - | [[Category: Antibiotic modifying enzyme]]
| + | |
| - | [[Category: Substrate selectivity]]
| + | |
| - | [[Category: Transferase]]
| + | |
| Structural highlights
Function
Q47030_ENTCL
Publication Abstract from PubMed
The position, bonding and dynamics of hydrogen atoms in the catalytic centers of proteins are essential for catalysis. The role of short hydrogen bonds in catalysis has remained highly debated and led to establishment of several distinctive geometrical arrangements of hydrogen atoms vis-a-vis the heavier donor and acceptor counterparts, that is, low-barrier, single-well or short canonical hydrogen bonds. Here we demonstrate how the position of a hydrogen atom in the catalytic triad of an aminoglycoside inactivating enzyme leads to a thirty-fold increase in catalytic turnover. A low-barrier hydrogen bond is present in the enzyme active site for the substrates that are turned over the best, whereas a canonical hydrogen bond is found with the least preferred substrate. This is the first comparison of these hydrogen bonds involving an identical catalytic network, while directly demonstrating how active site electrostatics adapt to the electronic nature of substrates to tune catalysis.
Low-Barrier and Canonical Hydrogen Bonds Modulate Activity and Specificity of a Catalytic Triad.,Kumar P, Agarwal PK, Waddell MB, Mittag T, Serpersu EH, Cuneo MJ Angew Chem Int Ed Engl. 2019 Nov 4;58(45):16260-16266. doi:, 10.1002/anie.201908535. Epub 2019 Sep 24. PMID:31515870[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Kumar P, Agarwal PK, Waddell MB, Mittag T, Serpersu EH, Cuneo MJ. Low-Barrier and Canonical Hydrogen Bonds Modulate Activity and Specificity of a Catalytic Triad. Angew Chem Int Ed Engl. 2019 Nov 4;58(45):16260-16266. doi:, 10.1002/anie.201908535. Epub 2019 Sep 24. PMID:31515870 doi:http://dx.doi.org/10.1002/anie.201908535
|