|
|
Line 3: |
Line 3: |
| <StructureSection load='6ptt' size='340' side='right'caption='[[6ptt]], [[Resolution|resolution]] 1.84Å' scene=''> | | <StructureSection load='6ptt' size='340' side='right'caption='[[6ptt]], [[Resolution|resolution]] 1.84Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6ptt]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/"flavobacterium_thermophilum"_yoshida_and_oshima_1971 "flavobacterium thermophilum" yoshida and oshima 1971]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6PTT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6PTT FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6ptt]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermus_thermophilus Thermus thermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6PTT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6PTT FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CUA:DINUCLEAR+COPPER+ION'>CUA</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.84Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">cbaB, ctaC ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=274 "Flavobacterium thermophilum" Yoshida and Oshima 1971])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CUA:DINUCLEAR+COPPER+ION'>CUA</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Cytochrome-c_oxidase Cytochrome-c oxidase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.9.3.1 1.9.3.1] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6ptt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ptt OCA], [https://pdbe.org/6ptt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6ptt RCSB], [https://www.ebi.ac.uk/pdbsum/6ptt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6ptt ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6ptt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ptt OCA], [https://pdbe.org/6ptt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6ptt RCSB], [https://www.ebi.ac.uk/pdbsum/6ptt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6ptt ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/COX2_THETH COX2_THETH]] Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).
| + | [https://www.uniprot.org/uniprot/COX2_THET8 COX2_THET8] Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 27: |
Line 26: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Flavobacterium thermophilum yoshida and oshima 1971]] | |
- | [[Category: Cytochrome-c oxidase]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Alzari, P M]] | + | [[Category: Thermus thermophilus]] |
- | [[Category: Giannini, E]] | + | [[Category: Alzari PM]] |
- | [[Category: Lisa, M N]] | + | [[Category: Giannini E]] |
- | [[Category: Llases, M E]]
| + | [[Category: Lisa MN]] |
- | [[Category: Vila, A J]] | + | [[Category: Llases ME]] |
- | [[Category: Cua site]] | + | [[Category: Vila AJ]] |
- | [[Category: Cupredoxin fold]] | + | |
- | [[Category: Electron transfer]]
| + | |
- | [[Category: Electron transport]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
| Structural highlights
Function
COX2_THET8 Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).
Publication Abstract from PubMed
The CuA center is a paradigm for the study of long-range biological electron transfer. This metal center is an essential cofactor for terminal oxidases like cytochrome c oxidase, the enzymatic complex responsible for cellular respiration in eukaryotes and in most bacteria. CuA acts as an electron hub by transferring electrons from reduced cytochrome c to the catalytic site of the enzyme where dioxygen reduction takes place. Different electron transfer pathways have been proposed involving a weak axial methionine ligand residue, conserved in all CuA sites. This hypothesis has been challenged by theoretical calculations indicating the lack of electron spin density in this ligand. Here we report an NMR study with selectively labeled methionine in a native CuA. NMR spectroscopy discloses the presence of net electron spin density in the methionine axial ligand in the two alternative ground states of this metal center. Similar spin delocalization observed on two second sphere mutants further supports this evidence. These data provide a novel view of the electronic structure of CuA centers and support previously neglected electron transfer pathways.
Unexpected electron spin density on the axial methionine ligand in CuA suggests its involvement in electron pathways.,Morgada MN, Llases ME, Giannini E, Castro MA, Alzari PM, Murgida DH, Lisa MN, Vila AJ Chem Commun (Camb). 2020 Jan 28;56(8):1223-1226. doi: 10.1039/c9cc08883k. PMID:31897463[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Morgada MN, Llases ME, Giannini E, Castro MA, Alzari PM, Murgida DH, Lisa MN, Vila AJ. Unexpected electron spin density on the axial methionine ligand in CuA suggests its involvement in electron pathways. Chem Commun (Camb). 2020 Jan 28;56(8):1223-1226. doi: 10.1039/c9cc08883k. PMID:31897463 doi:http://dx.doi.org/10.1039/c9cc08883k
|