|
|
Line 3: |
Line 3: |
| <StructureSection load='6pw0' size='340' side='right'caption='[[6pw0]], [[Resolution|resolution]] 2.50Å' scene=''> | | <StructureSection load='6pw0' size='340' side='right'caption='[[6pw0]], [[Resolution|resolution]] 2.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6pw0]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Rhos4 Rhos4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6PW0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6PW0 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6pw0]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Cereibacter_sphaeroides_2.4.1 Cereibacter sphaeroides 2.4.1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6PW0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6PW0 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=DMU:DECYL-BETA-D-MALTOPYRANOSIDE'>DMU</scene>, <scene name='pdbligand=HEA:HEME-A'>HEA</scene>, <scene name='pdbligand=HTH:(2S,3R)-HEPTANE-1,2,3-TRIOL'>HTH</scene>, <scene name='pdbligand=MAL:MALTOSE'>MAL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=OH:HYDROXIDE+ION'>OH</scene>, <scene name='pdbligand=TRD:TRIDECANE'>TRD</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2gsm|2gsm]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=DMU:DECYL-BETA-D-MALTOPYRANOSIDE'>DMU</scene>, <scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene>, <scene name='pdbligand=HEA:HEME-A'>HEA</scene>, <scene name='pdbligand=HTH:(2S,3R)-HEPTANE-1,2,3-TRIOL'>HTH</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=OH:HYDROXIDE+ION'>OH</scene>, <scene name='pdbligand=PRD_900001:alpha-maltose'>PRD_900001</scene>, <scene name='pdbligand=TRD:TRIDECANE'>TRD</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">coxI, RSP_1877 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=272943 RHOS4]), coxII, RSP_1826 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=272943 RHOS4])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6pw0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6pw0 OCA], [https://pdbe.org/6pw0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6pw0 RCSB], [https://www.ebi.ac.uk/pdbsum/6pw0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6pw0 ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cytochrome-c_oxidase Cytochrome-c oxidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.9.3.1 1.9.3.1] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6pw0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6pw0 OCA], [http://pdbe.org/6pw0 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6pw0 RCSB], [http://www.ebi.ac.uk/pdbsum/6pw0 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6pw0 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/Q3J5G0_RHOS4 Q3J5G0_RHOS4]] Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).[RuleBase:RU004024] | + | [https://www.uniprot.org/uniprot/Q3J5A7_CERS4 Q3J5A7_CERS4] Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B.[RuleBase:RU363061] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 6pw0" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6pw0" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Cytochrome c oxidase 3D structures|Cytochrome c oxidase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Cytochrome-c oxidase]] | + | [[Category: Cereibacter sphaeroides 2 4.1]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Rhos4]]
| + | [[Category: Ferguson-Miller S]] |
- | [[Category: Ferguson-Miller, S]] | + | [[Category: Liu J]] |
- | [[Category: Liu, J]] | + | |
- | [[Category: Electron transfer]]
| + | |
- | [[Category: Membrane protein]]
| + | |
- | [[Category: Oxidase]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
- | [[Category: Proton pumping]]
| + | |
| Structural highlights
6pw0 is a 4 chain structure with sequence from Cereibacter sphaeroides 2.4.1. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 2.5Å |
Ligands: | , , , , , , , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
Q3J5A7_CERS4 Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B.[RuleBase:RU363061]
Publication Abstract from PubMed
Data from earlier studies showed that minor structural changes at the surface of cytochrome c oxidase, near one of the proton-input pathways (the D pathway), result in dramatically decreased activity and a lower proton-pumping stoichiometry. To further investigate how changes around the D pathway orifice influence functionality of the enzyme, here we modified the nearby C-terminal loop of subunit I of the Rhodobacter sphaeroides cytochrome c oxidase. Removal of 16 residues form this flexible surface loop resulted in a decrease in the proton-pumping stoichiometry to <50% of that of the wild-type enzyme. Replacement of the protonatable residue Glu552, part of the same loop, by an Ala, resulted in a similar decrease in the proton-pumping stoichiometry without loss of the O2-reduction activity or changes in the proton-uptake kinetics. The data show that minor structural changes at the orifice of the D pathway, at a distance of ~40A from the proton gate of cytochrome c oxidase, may alter the proton-pumping stoichiometry of the enzyme.
Structural changes at the surface of cytochrome c oxidase alter the proton-pumping stoichiometry.,Berg J, Liu J, Svahn E, Ferguson-Miller S, Brzezinski P Biochim Biophys Acta Bioenerg. 2019 Nov 13:148116. doi:, 10.1016/j.bbabio.2019.148116. PMID:31733183[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Berg J, Liu J, Svahn E, Ferguson-Miller S, Brzezinski P. Structural changes at the surface of cytochrome c oxidase alter the proton-pumping stoichiometry. Biochim Biophys Acta Bioenerg. 2019 Nov 13:148116. doi:, 10.1016/j.bbabio.2019.148116. PMID:31733183 doi:http://dx.doi.org/10.1016/j.bbabio.2019.148116
|