|
|
| Line 3: |
Line 3: |
| | <StructureSection load='6uy5' size='340' side='right'caption='[[6uy5]], [[Resolution|resolution]] 1.50Å' scene=''> | | <StructureSection load='6uy5' size='340' side='right'caption='[[6uy5]], [[Resolution|resolution]] 1.50Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[6uy5]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6UY5 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6UY5 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6uy5]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6UY5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6UY5 FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.501Å</td></tr> |
| - | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CSS:S-MERCAPTOCYSTEINE'>CSS</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CSS:S-MERCAPTOCYSTEINE'>CSS</scene>, <scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6uy5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6uy5 OCA], [http://pdbe.org/6uy5 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6uy5 RCSB], [http://www.ebi.ac.uk/pdbsum/6uy5 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6uy5 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6uy5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6uy5 OCA], [https://pdbe.org/6uy5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6uy5 RCSB], [https://www.ebi.ac.uk/pdbsum/6uy5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6uy5 ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/SUFS_ECOLI SUFS_ECOLI]] Cysteine desulfurases mobilize the sulfur from L-cysteine to yield L-alanine, an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Component of the suf operon, which is activated and required under specific conditions such as oxidative stress and iron limitation. Acts as a potent selenocysteine lyase in vitro, that mobilizes selenium from L-selenocysteine. Selenocysteine lyase activity is however unsure in vivo.<ref>PMID:10829016</ref> <ref>PMID:12089140</ref> <ref>PMID:11997471</ref> <ref>PMID:12876288</ref> <ref>PMID:12941942</ref> | + | [https://www.uniprot.org/uniprot/SUFS_ECOLI SUFS_ECOLI] Cysteine desulfurases mobilize the sulfur from L-cysteine to yield L-alanine, an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Component of the suf operon, which is activated and required under specific conditions such as oxidative stress and iron limitation. Acts as a potent selenocysteine lyase in vitro, that mobilizes selenium from L-selenocysteine. Selenocysteine lyase activity is however unsure in vivo.<ref>PMID:10829016</ref> <ref>PMID:12089140</ref> <ref>PMID:11997471</ref> <ref>PMID:12876288</ref> <ref>PMID:12941942</ref> |
| | + | <div style="background-color:#fffaf0;"> |
| | + | == Publication Abstract from PubMed == |
| | + | Cysteine serves as the sulfur source for the biosynthesis of Fe-S clusters and thio-cofactors, molecules that are required for core metabolic processes in all organisms. Therefore, cysteine desulfurases, which mobilize sulfur for its incorporation into thio-cofactors by cleaving the C(alpha)-S bond of cysteine, are ubiquitous in nature. SufS, a type 2 cysteine desulfurase that is present in plants and microorganisms, mobilizes sulfur from cysteine to the transpersulfurase SufE to initiate Fe-S biosynthesis. Here, a 1.5 A resolution X-ray crystal structure of the Escherichia coli SufS homodimer is reported which adopts a state in which the two monomers are rotated relative to their resting state, displacing a beta-hairpin from its typical position blocking transpersulfurase access to the SufS active site. A global structure and sequence analysis of SufS family members indicates that the active-site beta-hairpin is likely to require adjacent structural elements to function as a beta-latch regulating access to the SufS active site. |
| | + | |
| | + | Structural evidence for a latch mechanism regulating access to the active site of SufS-family cysteine desulfurases.,Dunkle JA, Bruno MR, Frantom PA Acta Crystallogr D Struct Biol. 2020 Mar 1;76(Pt 3):291-301. doi: , 10.1107/S2059798320000790. Epub 2020 Feb 25. PMID:32133993<ref>PMID:32133993</ref> |
| | + | |
| | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| | + | </div> |
| | + | <div class="pdbe-citations 6uy5" style="background-color:#fffaf0;"></div> |
| | + | |
| | + | ==See Also== |
| | + | *[[Cysteine desulfurase 3D structures|Cysteine desulfurase 3D structures]] |
| | + | *[[Selenocysteine lyase|Selenocysteine lyase]] |
| | == References == | | == References == |
| | <references/> | | <references/> |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| | + | [[Category: Escherichia coli K-12]] |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Dunkle, J A]] | + | [[Category: Dunkle JA]] |
| - | [[Category: Frantom, P A]] | + | [[Category: Frantom PA]] |
| - | [[Category: Cysteine desulfurase]]
| + | |
| - | [[Category: Lyase]]
| + | |
| - | [[Category: Persulfide]]
| + | |
| - | [[Category: Plp]]
| + | |
| - | [[Category: Suf]]
| + | |
| - | [[Category: Transferase]]
| + | |
| Structural highlights
Function
SUFS_ECOLI Cysteine desulfurases mobilize the sulfur from L-cysteine to yield L-alanine, an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Component of the suf operon, which is activated and required under specific conditions such as oxidative stress and iron limitation. Acts as a potent selenocysteine lyase in vitro, that mobilizes selenium from L-selenocysteine. Selenocysteine lyase activity is however unsure in vivo.[1] [2] [3] [4] [5]
Publication Abstract from PubMed
Cysteine serves as the sulfur source for the biosynthesis of Fe-S clusters and thio-cofactors, molecules that are required for core metabolic processes in all organisms. Therefore, cysteine desulfurases, which mobilize sulfur for its incorporation into thio-cofactors by cleaving the C(alpha)-S bond of cysteine, are ubiquitous in nature. SufS, a type 2 cysteine desulfurase that is present in plants and microorganisms, mobilizes sulfur from cysteine to the transpersulfurase SufE to initiate Fe-S biosynthesis. Here, a 1.5 A resolution X-ray crystal structure of the Escherichia coli SufS homodimer is reported which adopts a state in which the two monomers are rotated relative to their resting state, displacing a beta-hairpin from its typical position blocking transpersulfurase access to the SufS active site. A global structure and sequence analysis of SufS family members indicates that the active-site beta-hairpin is likely to require adjacent structural elements to function as a beta-latch regulating access to the SufS active site.
Structural evidence for a latch mechanism regulating access to the active site of SufS-family cysteine desulfurases.,Dunkle JA, Bruno MR, Frantom PA Acta Crystallogr D Struct Biol. 2020 Mar 1;76(Pt 3):291-301. doi: , 10.1107/S2059798320000790. Epub 2020 Feb 25. PMID:32133993[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Lacourciere GM, Mihara H, Kurihara T, Esaki N, Stadtman TC. Escherichia coli NifS-like proteins provide selenium in the pathway for the biosynthesis of selenophosphate. J Biol Chem. 2000 Aug 4;275(31):23769-73. PMID:10829016 doi:10.1074/jbc.M000926200
- ↑ Takahashi Y, Tokumoto U. A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J Biol Chem. 2002 Aug 9;277(32):28380-3. Epub 2002 Jun 27. PMID:12089140 doi:http://dx.doi.org/10.1074/jbc.C200365200
- ↑ Mihara H, Kato S, Lacourciere GM, Stadtman TC, Kennedy RA, Kurihara T, Tokumoto U, Takahashi Y, Esaki N. The iscS gene is essential for the biosynthesis of 2-selenouridine in tRNA and the selenocysteine-containing formate dehydrogenase H. Proc Natl Acad Sci U S A. 2002 May 14;99(10):6679-83. Epub 2002 May 7. PMID:11997471 doi:http://dx.doi.org/10.1073/pnas.102176099
- ↑ Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F. Biogenesis of Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J Biol Chem. 2003 Oct 3;278(40):38352-9. Epub 2003 Jul 21. PMID:12876288 doi:http://dx.doi.org/10.1074/jbc.M305953200
- ↑ Outten FW, Wood MJ, Munoz FM, Storz G. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J Biol Chem. 2003 Nov 14;278(46):45713-9. Epub 2003 Aug 26. PMID:12941942 doi:http://dx.doi.org/10.1074/jbc.M308004200
- ↑ Dunkle JA, Bruno MR, Frantom PA. Structural evidence for a latch mechanism regulating access to the active site of SufS-family cysteine desulfurases. Acta Crystallogr D Struct Biol. 2020 Mar 1;76(Pt 3):291-301. PMID:32133993 doi:10.1107/S2059798320000790
|