|
|
| Line 3: |
Line 3: |
| | <StructureSection load='6vaw' size='340' side='right'caption='[[6vaw]], [[Resolution|resolution]] 1.75Å' scene=''> | | <StructureSection load='6vaw' size='340' side='right'caption='[[6vaw]], [[Resolution|resolution]] 1.75Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[6vaw]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Arachis_hypogaea Arachis hypogaea]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6VAW OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6VAW FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6vaw]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Arachis_hypogaea Arachis hypogaea]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6VAW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6VAW FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=S3W:N-[(2R,3R,4S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]-N-[(1-{[(2R,3S,4S,5R,6S)-3,4,5-trihydroxy-6-methoxytetrahydro-2H-pyran-2-yl]methyl}-1H-1,2,3-triazol-4-yl)methyl]butanediamide'>S3W</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.75Å</td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6vaw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6vaw OCA], [http://pdbe.org/6vaw PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6vaw RCSB], [http://www.ebi.ac.uk/pdbsum/6vaw PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6vaw ProSAT]</span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=S3W:N-[(2R,3R,4S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]-N-[(1-{[(2R,3S,4S,5R,6S)-3,4,5-trihydroxy-6-methoxytetrahydro-2H-pyran-2-yl]methyl}-1H-1,2,3-triazol-4-yl)methyl]butanediamide'>S3W</scene></td></tr> |
| | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6vaw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6vaw OCA], [https://pdbe.org/6vaw PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6vaw RCSB], [https://www.ebi.ac.uk/pdbsum/6vaw PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6vaw ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/LECG_ARAHY LECG_ARAHY]] D-galactose specific lectin. | + | [https://www.uniprot.org/uniprot/LECG_ARAHY LECG_ARAHY] D-galactose specific lectin. |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 18: |
Line 19: |
| | </div> | | </div> |
| | <div class="pdbe-citations 6vaw" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6vaw" style="background-color:#fffaf0;"></div> |
| | + | |
| | + | ==See Also== |
| | + | *[[Galactose-binding lectin|Galactose-binding lectin]] |
| | == References == | | == References == |
| | <references/> | | <references/> |
| Line 24: |
Line 28: |
| | [[Category: Arachis hypogaea]] | | [[Category: Arachis hypogaea]] |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Cagnoni, A J]] | + | [[Category: Cagnoni AJ]] |
| - | [[Category: Goldbaum, F A]] | + | [[Category: Goldbaum FA]] |
| - | [[Category: Klinke, S]] | + | [[Category: Klinke S]] |
| - | [[Category: Otero, L H]] | + | [[Category: Otero LH]] |
| - | [[Category: Primo, E D]] | + | [[Category: Primo ED]] |
| - | [[Category: Uhrig, M L]] | + | [[Category: Uhrig ML]] |
| - | [[Category: Beta-galactosylamide]]
| + | |
| - | [[Category: Beta-thiogalactoside]]
| + | |
| - | [[Category: Glycomimetic]]
| + | |
| - | [[Category: Peanut agglutinin]]
| + | |
| - | [[Category: Sugar binding protein]]
| + | |
| Structural highlights
Function
LECG_ARAHY D-galactose specific lectin.
Publication Abstract from PubMed
Carbohydrate-lectin interactions are involved in important cellular recognition processes, including viral and bacterial infections, inflammation and tumor metastasis. Hence, structural studies of lectin-synthetic glycan complexes are essential for understanding lectin-recognition processes and for the further design of promising chemotherapeutics that interfere with sugar-lectin interactions. Plant lectins are excellent models for the study of the molecular-recognition process. Among them, peanut lectin (PNA) is highly relevant in the field of glycobiology because of its specificity for beta-galactosides, showing high affinity towards the Thomsen-Friedenreich antigen, a well known tumor-associated carbohydrate antigen. Given this specificity, PNA is one of the most frequently used molecular probes for the recognition of tumor cell-surface O-glycans. Thus, it has been extensively used in glycobiology for inhibition studies with a variety of beta-galactoside and beta-lactoside ligands. Here, crystal structures of PNA are reported in complex with six novel synthetic hydrolytically stable beta-N- and beta-S-galactosides. These complexes disclosed key molecular-binding interactions of the different sugars with PNA at the atomic level, revealing the roles of specific water molecules in protein-ligand recognition. Furthermore, binding-affinity studies by isothermal titration calorimetry showed dissociation-constant values in the micromolar range, as well as a positive multivalency effect in terms of affinity in the case of the divalent compounds. Taken together, this work provides a qualitative structural rationale for the upcoming synthesis of optimized glycoclusters designed for the study of lectin-mediated biological processes. The understanding of the recognition of beta-N- and beta-S-galactosides by PNA represents a benchmark in protein-carbohydrate interactions since they are novel synthetic ligands that do not belong to the family of O-linked glycosides.
Crystal structures of peanut lectin in the presence of synthetic beta-N- and beta-S-galactosides disclose evidence for the recognition of different glycomimetic ligands.,Cagnoni AJ, Primo ED, Klinke S, Cano ME, Giordano W, Marino KV, Kovensky J, Goldbaum FA, Uhrig ML, Otero LH Acta Crystallogr D Struct Biol. 2020 Nov 1;76(Pt 11):1080-1091. doi:, 10.1107/S2059798320012371. Epub 2020 Oct 13. PMID:33135679[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Cagnoni AJ, Primo ED, Klinke S, Cano ME, Giordano W, Marino KV, Kovensky J, Goldbaum FA, Uhrig ML, Otero LH. Crystal structures of peanut lectin in the presence of synthetic beta-N- and beta-S-galactosides disclose evidence for the recognition of different glycomimetic ligands. Acta Crystallogr D Struct Biol. 2020 Nov 1;76(Pt 11):1080-1091. doi:, 10.1107/S2059798320012371. Epub 2020 Oct 13. PMID:33135679 doi:http://dx.doi.org/10.1107/S2059798320012371
|